初中數(shù)學(xué)教案【精】
作為一名默默奉獻(xiàn)的教育工作者,總不可避免地需要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的初中數(shù)學(xué)教案,歡迎大家分享。
初中數(shù)學(xué)教案1
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1.經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進(jìn)一步發(fā)展符號意識。
2.通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解 “ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一 知識回顧
解下列方程:
1. 3x+1=4
2. x-2=3
3. 2x+0.5x=-10
4. 3x-7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
。1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
。2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進(jìn)行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二 問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
。▽W(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1.找出問題中的已知數(shù)和已知條件。(獨立回答)
2.設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3.列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4.找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等.(學(xué)生回答,教師追問)
5.列方程:3x+20=4x-25(1)
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25).
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20.
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)1。
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
。1)學(xué)生對列方程解決實際問題的`一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三 解法運用
例2解方程
3x+7=32-2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四 鞏固提高
1.第91頁練習(xí)(1)(2)
2.某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3.小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0.5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1.學(xué)生在計算中可能出現(xiàn)的錯誤。
2.x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3.用實物投影展示學(xué)困生的完成情況,進(jìn)行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達(dá)到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進(jìn)行小結(jié)。
學(xué)生進(jìn)行總結(jié)歸納、回答交流,相互完善補(bǔ)充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進(jìn)行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。
布置作業(yè):
第93頁第3題
初中數(shù)學(xué)教案2
教材分析
《垂線》選自義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》(華東師大版)七年級上冊第四章相交線。垂線是平面幾何所要研究的基本內(nèi)容之一,是七年級上冊第四章“圖形的初步認(rèn)識”的主要內(nèi)容。垂線的概念、畫法和性質(zhì)是重要的基礎(chǔ)知識,是進(jìn)一步學(xué)習(xí)空間里的垂直關(guān)系、三角形的高、切線的性質(zhì)和判定以及平面直角坐標(biāo)系等知識的基礎(chǔ),與其他數(shù)學(xué)知識一樣,它在現(xiàn)實生活中有著廣泛的應(yīng)用。垂線的概念和性質(zhì),蘊(yùn)含著“從一般到特殊”的認(rèn)識規(guī)律,是培養(yǎng)學(xué)生思維能力的重要內(nèi)容之一。它作為學(xué)習(xí)幾何的基礎(chǔ)內(nèi)容,對以后學(xué)生利用準(zhǔn)確合理的構(gòu)造畫出垂線來分析幾何關(guān)系、解決幾何綜合問題及相關(guān)實際問題具有重要意義。
實驗教材將本節(jié)內(nèi)容分兩課時,與九年義務(wù)教育教材相比,雖然縮短了一課時,但更注重對學(xué)生實際操作能力的培養(yǎng),更注重滲透變換的思想!白鲆蛔觥边@種探究性活動,為培養(yǎng)學(xué)生的參與意識和創(chuàng)新意識提供了機(jī)會。垂線的畫法是學(xué)生學(xué)習(xí)本節(jié)內(nèi)容的一個難點。結(jié)合學(xué)生所學(xué)的知識及生活實際,有效地引導(dǎo)學(xué)生認(rèn)知和感受知識的發(fā)生發(fā)展過程;精心設(shè)計投影片和變式訓(xùn)練,并恰到好處地利用運動變化,體現(xiàn)畫垂線的思維過程,在掌握垂線概念的基礎(chǔ)上,使學(xué)生順利自然地突破畫垂線的難點。
學(xué)生分析
我校屬農(nóng)村城鎮(zhèn)中學(xué),學(xué)生全部享受九年義務(wù)教育,實行電腦隨機(jī)分班,未進(jìn)行篩選。學(xué)生智力水平參差不齊,基礎(chǔ)和發(fā)展均不平衡。經(jīng)過一學(xué)期的實踐,學(xué)生基本上適應(yīng)了以學(xué)習(xí)小組方式參與探究活動與班級學(xué)習(xí)方式相結(jié)合的學(xué)習(xí)方法,不同程度地享受到了數(shù)學(xué)知識來源于實踐操作的成功體驗,從而愿意在教師的指導(dǎo)下主動與同學(xué)探索、發(fā)現(xiàn)、歸納數(shù)學(xué)知識。
設(shè)計理念
針對教材內(nèi)容和學(xué)生實際,組織學(xué)生實踐、感悟出兩直線互相垂直的概念,引導(dǎo)學(xué)生分析解決問題,使學(xué)生在自己動手的基礎(chǔ)上,發(fā)現(xiàn)垂線的性質(zhì),又借助于教具、實物、圖形、幻燈等,從直觀的感性認(rèn)識發(fā)現(xiàn)抽象的概念,使學(xué)生成為探求知識的主體。同時利用問題探究式的方法讓學(xué)生對新課加以鞏固理解。在探究垂線的性質(zhì)時,采取小組學(xué)習(xí)形式,可增強(qiáng)學(xué)生之間的合作互助,彌補(bǔ)教師在大班額教學(xué)中對弱勢學(xué)生關(guān)注的不足。初步探索在農(nóng)村中學(xué)中如何進(jìn)行研究性學(xué)習(xí)。
教學(xué)自標(biāo)
1.了解兩條直線互相垂直的概念;知道過一點有且僅有一條直線垂直于已知直線,會用三角尺或量角器過一點畫一條直線的垂線。
2.培養(yǎng)提高觀察、理解能力,幾何語言能力,畫圖能力,抽象思維能力和運用知識解決實際問題的能力。
3.培養(yǎng)辯證唯物主義思想及不斷發(fā)現(xiàn)、探索新知識的精神。
4.通過創(chuàng)設(shè)情境,利用變式訓(xùn)練和多種教學(xué)手段來激發(fā)學(xué)生學(xué)習(xí)興趣,給學(xué)生創(chuàng)造成功的機(jī)會,使他們愛學(xué)、會學(xué)、學(xué)會,營造學(xué)生可持續(xù)發(fā)展的氛圍。
教學(xué)重點:
兩直線互相垂直的有關(guān)性質(zhì)。
教學(xué)難點:
過直線上(外)一點作已知直線的垂線。
【學(xué)習(xí)目標(biāo)是從基礎(chǔ)知識教學(xué)、基本技能訓(xùn)練、數(shù)學(xué)能力培養(yǎng)和德育目標(biāo)四個方面,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》關(guān)于“垂線”的具體教學(xué)要成和各種教學(xué)原則,以及本節(jié)的教材內(nèi)容與學(xué)生的實際確定的!
課前準(zhǔn)備
課前準(zhǔn)備教具:多媒體、投影儀、自制的可旋轉(zhuǎn)的兩根木條等。
生活經(jīng)驗準(zhǔn)備:旗桿與旗臺邊線線的垂直關(guān)系;紅十字會標(biāo)志。
以往知識準(zhǔn)備:兩條直線相交,產(chǎn)生兩對對頂角,且對頂角相等。
教學(xué)流程
一、創(chuàng)設(shè)問題情境。
師:這是兩幅草坪的圖案。在綠色的草坪上,畫著兩條交叉的道路。你覺得甲圖、乙圖哪一幅更漂亮、更勻稱?這是什么原因?(教師用多媒體或投影儀展示。)
。▽W(xué)生眾說紛紜,教師應(yīng)給予充分的肯定。)
師:圖甲是兩條直線相交的一種特殊情況,它在生活、生產(chǎn)實際中應(yīng)用比較廣。請你再舉一些類似的例子。
生:……
師:讓我們共同探索圖甲這種特殊情況。
【借助于教具、模型、實物、圖形及幻燈等教學(xué)手段,使學(xué)生先得到直觀的感性認(rèn)識,培養(yǎng)學(xué)生從感性到理性的認(rèn)知方式!
二、回顧再現(xiàn)。
對頂角相等兩條直線相交只有一個交點。如圖1,直線AB和CD相交,交點為點O,有四個小于平角的角,且。
三、提高。
教師演示自制教具,要求學(xué)生觀察當(dāng)一根木條繞著另一根木條旋轉(zhuǎn)時的變化情況,并用數(shù)學(xué)語言進(jìn)行描述。
【教師應(yīng)鼓勵學(xué)生大膽描述自己的觀察結(jié)果,并及時予以肯定。】
師:兩直線相交,有兩組分別相等的角,當(dāng)一個角等于90°時,其他三個角有什么變化?可能產(chǎn)生四個相等的角嗎?如圖2,同時演示教具,將直線CD繞著點O旋轉(zhuǎn),當(dāng)時,是多少度?
生:……
師:你們的依據(jù)是什么?
生:……
。▽W(xué)生的答案很豐富:用度量的方法;利用對頂角相等;互補(bǔ)的概念……學(xué)生回答過程中,只要有道理就應(yīng)予以鼓勵。)
【這里希望在感性認(rèn)識的基礎(chǔ)上進(jìn)行抽象概念的教學(xué),培養(yǎng)學(xué)生的抽象思維能力!
四、提升。
教師引導(dǎo)學(xué)生歸納出:兩條直線互相垂直,兩條直線相交所構(gòu)成的四個角中有一個角是直角時,稱這兩條直線互相垂直。
師:(1)如圖2,直線AB和CD相交,交點為O,,記為,垂足為點O! ”讀作“AB垂直于CD”或“CD垂直于AB”。
。2)兩條直線,垂足為點O,則。
【實現(xiàn)數(shù)學(xué)的三大語言??文字語言、符號語言和幾何語言之間的切換,并板書,以突出其重要性!
五、再探究。
師:請同學(xué)們舉一些日常生活中互相垂直的`直線的例子;
生:……
【希望實現(xiàn)將數(shù)學(xué)知識在實際生活中的運用,并為后繼學(xué)習(xí)數(shù)學(xué)知識增加感性認(rèn)知。】
師:請同學(xué)們用三角尺或量角器:
。1)經(jīng)過直線 AB 外一點 P ,畫直線與已知直線 AB 垂直,且討論這樣的直線有幾條。
(2)設(shè)這一點在直線 AB 上,重作上述過程。
【學(xué)生分組或獨立探索,教師巡視指導(dǎo)!
教師引導(dǎo)學(xué)生歸納結(jié)論:在同一平面內(nèi),經(jīng)過直線外或直線上一點,有且只有一條直線與已知直線垂直。
【通過學(xué)生動手操作畫圖,教師在巡視中及時指出、糾正學(xué)生發(fā)生的錯誤,訓(xùn)練學(xué)生以嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度研究問題、解決問題。】
師:請同學(xué)們互相交流且簡單描述一下,上述結(jié)論用三角尺的作法過程和“有且只有”的含義。
(學(xué)生討論交流,教師巡視)
教師引導(dǎo)歸納出:
(1)靠已知直線??找待過定點??畫已知直線的垂線(一靠、二過、三垂直)。
(2)有一條并且只有一條,沒有第二條。
師:如圖5,請同學(xué)們相互比試,誰能更快地過直線CD上一點P作直線AB的垂線。并在小組間進(jìn)行交流。
【探究性活動是《數(shù)學(xué)課程標(biāo)準(zhǔn)》的一個重要舉措,并為培養(yǎng)學(xué)生的創(chuàng)新意識提供了一些機(jī)會。“做一做”進(jìn)行小組交流,一方面是為了加強(qiáng)對學(xué)生動手操作能力的培養(yǎng),同時也培養(yǎng)了學(xué)生的合作意識和競爭意識,使學(xué)生更深入理解垂直、垂線的概念!
六、學(xué)生探索。
學(xué)生分小組測量,討論,歸納。如圖6所示,點A與直線DC上各點的距離長短一樣嗎?誰最短?它具備什么條件?(抽小組代表發(fā)言。)
七、總結(jié)歸納。
教師總結(jié)歸納:只有線段AB最短,且當(dāng)AB與DC垂直時,才最短。
教師引導(dǎo)學(xué)生得出線段AB特征:A為直線外一點,B為過A向直線DC所引的垂線的垂足,
提高:線段AB的長度就是點A到直線DC的距離。
思考:點A到直線DC的距離與點A到點C的距離有什么區(qū)別?
點A到直線DC的距離:線段AB的長度,A為直線外一點,B為過A向直線DC所引的垂線的垂足;點A到點C的距離:兩點之間線段的長度。
【從生活實際.從學(xué)生感興趣、熟悉的問題引導(dǎo)學(xué)生發(fā)現(xiàn)里線的第二個性質(zhì),提高學(xué)生學(xué)數(shù)學(xué)的興趣,并適當(dāng)體現(xiàn)學(xué)數(shù)學(xué)??用數(shù)學(xué)??發(fā)現(xiàn)教學(xué)的思想!
八、較量(練習(xí))。
1.第170頁第1、2、3題。
2.應(yīng)用。
【帶有競爭性質(zhì)的練習(xí)使學(xué)生在相互競爭中,在實踐中應(yīng)用本節(jié)課的知識,分享獲取成功的喜悅,并促進(jìn)學(xué)生形成積極向上的心理品質(zhì)。】
。1)某村莊在如圖7所示的小河邊,為解決村莊供水問題,需把河中的水引到村莊A處,在河岸CD的什么地方開溝,才能使溝最短?畫出圖來,并說明道理。
(2)教材第170頁“做一做”。
。3)體育課上怎樣測量跳遠(yuǎn)成績。
【學(xué)以致用,學(xué)生做個小小設(shè)計師.興趣盎然,把這節(jié)課引入高潮。】
學(xué)生重溫“兩條直線互相垂直的概念”和“如何過已知直線上或已知直線外的一點作惟一的垂線”兩個知識點。
3.第174頁第1、2題。
4.學(xué)校的位置如圖8所示,請設(shè)計出學(xué)校到兩條公路的最短距離的方案,并在圖上標(biāo)出來,并說明理由。
課后反思
1.本節(jié)課主要采用了“問題探究式”的教學(xué)方法,鼓勵學(xué)生去發(fā)現(xiàn)、分析并解決問題,使學(xué)生在自己動手的基礎(chǔ)上,發(fā)現(xiàn)垂線的性質(zhì),又借助于教具、實物、圖形、幻燈等,從直觀的感性認(rèn)識中發(fā)現(xiàn)抽象的概念,使他們成為探求知識的主體,同時還利用學(xué)生較量形式讓他們對學(xué)習(xí)內(nèi)容加以鞏固理解。并設(shè)計了變式訓(xùn)練習(xí)題和開放性習(xí)題,來幫助學(xué)生逐步樹立轉(zhuǎn)化的思想和發(fā)展性思維,這對提高學(xué)生的能力是非常重要的。學(xué)生是課堂的主人,教師從引導(dǎo)學(xué)生設(shè)疑??感知??概括??應(yīng)用的每一個環(huán)節(jié),注意學(xué)生的積極參與、積極思維,使學(xué)生從被動的學(xué)習(xí)到主動探索和發(fā)現(xiàn)的轉(zhuǎn)化中感受到學(xué)習(xí)與探索的樂趣,適合七年級學(xué)生的認(rèn)知心理。
2.本節(jié)課采用不同的反饋手段和反饋練習(xí)。(1)設(shè)計變式習(xí)題、圖形、開放性習(xí)題。每次較量主要解決一個重點問題,同時使教師及時了解學(xué)生對數(shù)學(xué)知識的掌握情況,及時發(fā)現(xiàn)問題并及時矯正,掃清后續(xù)學(xué)習(xí)的障礙。(2)較量方法。如:筆答、口答、板演、快速搶答等,以增加反饋層面。通過練習(xí)較量使大多數(shù)學(xué)生的學(xué)習(xí)情況都能及時反饋給教師,使教師心中有數(shù)。(3)及時矯正。對每次較量情況進(jìn)行小組評定和教師點評,對學(xué)生中的創(chuàng)新解答及時給予肯定。創(chuàng)造了輕松、愉悅的學(xué)習(xí)環(huán)境。
3.但筆者根據(jù)上述設(shè)計進(jìn)行教學(xué)后,認(rèn)為“點到直線的距離”放在這里,值得商榷。這是因為:(1)此部分內(nèi)容與小學(xué)距離過大。在小學(xué)學(xué)習(xí)中,對于“點到直線的距離”,學(xué)生僅通過一些特殊圖形有了一點感性認(rèn)識,并未上升到點到線的距離的高度。(2)在本節(jié)內(nèi)容教學(xué)中,讓學(xué)生參與實踐、體驗,其難度較大。其理由是:本節(jié)教學(xué)內(nèi)容量大;設(shè)計了較多的動手實踐活動;作為學(xué)生課后實踐探索的習(xí)題,如能充分利用學(xué)生資源(如與家長、同伴),在實際生活中交流、感悟,收效會更好。
摘自海南出版社《新課標(biāo)優(yōu)秀教學(xué)設(shè)計與案例》
初中數(shù)學(xué)教案3
教學(xué)目標(biāo):
1.在具體情境中了解鄰補(bǔ)角、對頂角,能找出圖形中的一個角的鄰補(bǔ)角和對頂角.
2.理解對頂角相等,并能運用它解決一些問題.
重點:
鄰補(bǔ)角、對頂角的概念,對頂角的性質(zhì)與應(yīng)用.
難點:
理解對頂角相等的性質(zhì)的探索.
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
引導(dǎo)語:
我們生活的世界中,蘊(yùn)涵著大量的相交線和平行線.
本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.
二、嘗試活動,探索新知
教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.
教師提出問題:剪布時,用力握緊把手,發(fā)生了什么變化?進(jìn)而使什么也發(fā)生了變化?
學(xué)生觀察、思考、回答,得出:
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應(yīng)變。绻淖冇昧Ψ较颍S著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應(yīng)變大.
教師提問:我們可以把剪刀抽象成什么簡單的圖形?
學(xué)生回答:畫成兩條相交的直線,學(xué)生畫直線AB、CD相交于點O,并說出圖中4個角.
教師提問:兩兩相配共能組成幾對角?各對角的位置關(guān)系如何?根據(jù)不同的位置怎么將它們分類?
學(xué)生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對角的度數(shù)有什么關(guān)系?(學(xué)生得出結(jié)論:相鄰的兩個角互補(bǔ),對頂?shù)膬蓚角相等)
學(xué)生根據(jù)觀察和度量完成下表:
兩條直線相交、所形成的角、分類、位置關(guān)系、數(shù)量關(guān)系
教師提問:
如果改變∠AOC的大小,會改變它與其他角的位置關(guān)系和數(shù)量關(guān)系嗎?
學(xué)生思考回答:
只會改變數(shù)量關(guān)系而不會改變位置關(guān)系.
師生共同定義鄰補(bǔ)角、對頂角:
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補(bǔ)角.
如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.
教師提問:
你同意下列說法嗎?如果錯誤,如何訂正?
1.鄰補(bǔ)角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補(bǔ)”就是“互補(bǔ)”,就是這兩個角的另一條邊在同一條直線上.
2.鄰補(bǔ)角可看成是平角被過它的頂點的一條射線分成的兩個角.
3.鄰補(bǔ)角是互補(bǔ)的兩個角,互補(bǔ)的兩個角也是鄰補(bǔ)角.
學(xué)生思考回答:1、2是對的,3是錯的.
第3個應(yīng)改成:鄰補(bǔ)角是互補(bǔ)的兩個角,互補(bǔ)的兩個角不一定是鄰補(bǔ)角.
教師讓學(xué)生說一說在學(xué)習(xí)對頂角的概念后,通過實際操作獲得的.直觀體驗.
教師把說理過程規(guī)范地板書:
在右圖中,∠AOC的鄰補(bǔ)角是∠BOC和∠AOD,所以∠AOC與∠BOC互補(bǔ),∠AOC與∠AOD互補(bǔ),根據(jù)“同角的補(bǔ)角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.
教師板書對頂角的性質(zhì):
對頂角相等.
強(qiáng)調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:
對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.
三、例題講解
【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).
【答案】 由鄰補(bǔ)角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、鞏固練習(xí)
1.判斷下列圖中是否存在對頂角.
2.按要求完成下列各題.
(1)兩條直線相交,構(gòu)成哪兩種特殊位置關(guān)系的角?指出下圖中具有這兩種位置關(guān)系的角.
eq o(sup7(,圖(1)) ,圖(2))
(2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關(guān)系如何?
【答案】
1.都不存在對頂角.
2.(1)對頂角,鄰補(bǔ)角.
對頂角:∠AOC和∠BOD,∠AOD和∠BOC.
鄰補(bǔ)角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、課堂小結(jié)
教師引導(dǎo)學(xué)生進(jìn)行本節(jié)課的小結(jié)并強(qiáng)調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:對頂角的概念是確定兩角的位置關(guān)系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關(guān)系.
教學(xué)反思
通過本節(jié)課的學(xué)習(xí),大部分學(xué)生能積極主動地參與到學(xué)習(xí)活動中來,并能積極主動地提出各類問題并解決問題,達(dá)到了基本的教學(xué)效果.但是由于對新概念的理解不是很深刻,所以在應(yīng)用方面存在不足,針對這一情況,教師應(yīng)選擇典型的例題,詳細(xì)講解,指導(dǎo)學(xué)生探求解題的思路和方法,加深對概念的理解,做到熟練的應(yīng)用。
初中數(shù)學(xué)教案4
學(xué)習(xí)目標(biāo):
1.理解平行線的意義兩條直線的兩種位置關(guān)系;
2.理解并掌握平行公理及其推論的內(nèi)容;
3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;
學(xué)習(xí)重點:
探索和掌握平行公理及其推論.
學(xué)習(xí)難點:
對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)
一、學(xué)習(xí)過程:預(yù)習(xí)提問
兩條直線相交有幾個交點?
平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?
。ㄒ唬┊嬈叫芯
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據(jù)此方法練習(xí)畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
。ǘ┢叫泄砑巴普
1、思考:上圖中,①過點B畫直線a的'平行線,能畫 條;
、谶^點C畫直線a的平行線,能畫 條;
、勰惝嫷闹本有什么位置關(guān)系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
。3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關(guān)系是 。
4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初中數(shù)學(xué)教案5
一、教材分析
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(六三學(xué)制)七年級下冊第七章第三節(jié)多邊形內(nèi)角和。
二、教學(xué)目標(biāo)
1、知識目標(biāo):了解多邊形內(nèi)角和公式。
2、數(shù)學(xué)思考:通過把多邊形轉(zhuǎn)化成三角形體會轉(zhuǎn)化思想在幾何中的運用,同時讓學(xué)生體會從特殊到一般的認(rèn)識問題的方法。
3、解決問題:通過探索多邊形內(nèi)角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標(biāo):通過猜想、推理活動感受數(shù)學(xué)活動充滿著探索以及數(shù)學(xué)結(jié)論的確定性,提高學(xué)生學(xué)習(xí)熱情。
三、教學(xué)重、難點
重點:探索多邊形內(nèi)角和。
難點:探索多邊形內(nèi)角和時,如何把多邊形轉(zhuǎn)化成三角形。
四、教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、討論法
五、教具、學(xué)具
教具:多媒體課件
學(xué)具:三角板、量角器
六、教學(xué)媒體:大屏幕、實物投影
七、教學(xué)過程:
(一)創(chuàng)設(shè)情境,設(shè)疑激思
師:大家都知道三角形的內(nèi)角和是180,那么四邊形的內(nèi)角和,你知道嗎?
活動一:探究四邊形內(nèi)角和。
在獨立探索的基礎(chǔ)上,學(xué)生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內(nèi)角和是360。
方法二:把兩個三角形紙板拼在一起構(gòu)成四邊形,發(fā)現(xiàn)兩個三角形內(nèi)角和相加是360。
接下來,教師在方法二的基礎(chǔ)上引導(dǎo)學(xué)生利用作輔助線的方法,連結(jié)四邊形的對角線,把一個四邊形轉(zhuǎn)化成兩個三角形。
師:你知道五邊形的內(nèi)角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內(nèi)角和。
學(xué)生先獨立思考每個問題再分組討論。
關(guān)注:
。1)學(xué)生能否類比四邊形的方式解決問題得出正確的結(jié)論。
。2)學(xué)生能否采用不同的方法。
學(xué)生分組討論后進(jìn)行交流(五邊形的內(nèi)角和)
方法1:把五邊形分成三個三角形,3個180的和是540。
方法2:從五邊形內(nèi)部一點出發(fā),把五邊形分成五個三角形,然后用5個180的和減去一個周角360。結(jié)果得540。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180的和減去一個平角180,結(jié)果得540。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180加上360,結(jié)果得540。
師:你真聰明!做到了學(xué)以致用。
交流后,學(xué)生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內(nèi)角和之后,同學(xué)們又認(rèn)真地討論起六邊形、十邊形的內(nèi)角和。類比四邊形、五邊形的討論方法最終得出,六邊形內(nèi)角和是720,十邊形內(nèi)角和是1440。
(二)引申思考,培養(yǎng)創(chuàng)新
師:通過前面的討論,你能知道多邊形內(nèi)角和嗎?
活動三:探究任意多邊形的內(nèi)角和公式。
思考:
。1)多邊形內(nèi)角和與三角形內(nèi)角和的關(guān)系?
。2)多邊形的'邊數(shù)與內(nèi)角和的關(guān)系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關(guān)系?
學(xué)生結(jié)合思考題進(jìn)行討論,并把討論后的結(jié)果進(jìn)行交流。
發(fā)現(xiàn)1:四邊形內(nèi)角和是2個180的和,五邊形內(nèi)角和是3個180的和,六邊形內(nèi)角和是4個180的和,十邊形內(nèi)角和是8個180的和。發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內(nèi)角和增加180。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關(guān)系。
得出結(jié)論:多邊形內(nèi)角和公式:(n-2)·180。
(三)實際應(yīng)用,優(yōu)勢互補(bǔ)
1、口答:(1)七邊形內(nèi)角和()
(2)九邊形內(nèi)角和()
。3)十邊形內(nèi)角和()
2、搶答:(1)一個多邊形的內(nèi)角和等于1260,它是幾邊形?
(2)一個多邊形的內(nèi)角和是1440,且每個內(nèi)角都相等,則每個內(nèi)角的度數(shù)是()。
3、討論回答:一個多邊形的內(nèi)角和比四邊形的內(nèi)角和多540,并且這個多邊形的各個內(nèi)角都相等,這個多邊形每個內(nèi)角等于多少度?
(四)概括存儲
學(xué)生自己歸納總結(jié):
1、多邊形內(nèi)角和公式
2、運用轉(zhuǎn)化思想解決數(shù)學(xué)問題
3、用數(shù)形結(jié)合的思想解決問題
(五)作業(yè):練習(xí)冊第93頁1、2、3
八、教學(xué)反思:
1、教的轉(zhuǎn)變
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者,在引導(dǎo)學(xué)生畫圖、測量發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地展示,激發(fā)學(xué)生自覺探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣。
2、學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對學(xué)生的思維減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學(xué)生與學(xué)生,學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學(xué)生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
初中數(shù)學(xué)教案6
教學(xué)目標(biāo)
1, 掌握有理數(shù)的概念,會對有理數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,培養(yǎng)分類能力;
2, 了解分類的標(biāo)準(zhǔn)與分類結(jié)果的相關(guān)性,初步了解“集合”的含義;
3, 體驗分類是數(shù)學(xué)上的常用處理問題的方法。
教學(xué)難點 正確理解分類的標(biāo)準(zhǔn)和按照一定的標(biāo)準(zhǔn)進(jìn)行分類
知識重點 正確理解有理數(shù)的概念
教學(xué)過程(師生活動) 設(shè)計理念
探索新知 在前兩個學(xué)段,我們已經(jīng)學(xué)習(xí)了很多不同類型的數(shù),通過上兩節(jié)課的學(xué)習(xí),又知道了現(xiàn)在的數(shù)包括了負(fù)數(shù),現(xiàn)在請同學(xué)們在草稿紙上任意寫出3個數(shù)(同時請3個同學(xué)在黑板上寫出).
問題1:觀察黑板上的9個數(shù),并給它們進(jìn)行分類.
學(xué)生思考討論和交流分類的情況.
學(xué)生可能只給出很粗略的分類,如只分為“正數(shù)”和“負(fù)數(shù)”或“零”三類,此時,教師應(yīng)給予引導(dǎo)和鼓勵.
例如,
對于數(shù)5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數(shù)嗎?(不可以)所以它們是不同類型的數(shù),數(shù)5是正數(shù)中整個的數(shù),我們就稱它為“正整數(shù)”,而5. 1不是整個的數(shù),稱為“正分?jǐn)?shù),,.…(由于小數(shù)可化為分?jǐn)?shù),以后把小數(shù)和分?jǐn)?shù)都稱為分?jǐn)?shù))
通過教師的引導(dǎo)、鼓勵和不斷完善,以及學(xué)生自己的概括,最后歸納出我們已經(jīng)學(xué)過的5類不同的數(shù),它們分別是“正整數(shù),零,負(fù)整數(shù),正分?jǐn)?shù),負(fù)分?jǐn)?shù),’.
按照書本的說法,得出“整數(shù)”“分?jǐn)?shù)”和“有理數(shù)”的概念.
看書了解有理數(shù)名稱的由來.
“統(tǒng)稱”是指“合起來總的名稱”的意思.
試一試:按照以上的分類,你能作出一張有理數(shù)的分類表嗎?你能說出以上有理數(shù)的分類是以什么為標(biāo)準(zhǔn)的嗎?(是按照整數(shù)和分?jǐn)?shù)來劃分的) 分類是數(shù)學(xué)中解決問題的常用手段,這個引入具有開放的特點,學(xué)生樂于參與
學(xué)生自己嘗試分類時,可能會很粗略,教師給予引導(dǎo)和鼓勵,劃分?jǐn)?shù)的類型要從文字所表示的意義上去引導(dǎo),這樣學(xué)生易于理解。
有理數(shù)的分類表要在黑板或媒體上展示,分類的標(biāo)準(zhǔn)要引導(dǎo)學(xué)生去體會
練一練 1,任意寫出三個有理數(shù),并說出是什么類型的數(shù),與同伴進(jìn)行交流.
2,教科書第10頁練習(xí).
此練習(xí)中出現(xiàn)了集合的概念,可向?qū)W生作如下的說明.
把一些數(shù)放在一起,就組成了一個數(shù)的'集合,簡稱“數(shù)集”,所有有理數(shù)組成的數(shù)集叫做有理數(shù)集.類似地,所有整數(shù)組成的數(shù)集叫做整數(shù)集,所有負(fù)數(shù)組成的數(shù)集叫做負(fù)數(shù)集……;
數(shù)集一般用圓圈或大括號表示,因為集合中的數(shù)是無限的,而本題中只填了所給的幾個數(shù),所以應(yīng)該加上省略號.
思考:上面練習(xí)中的四個集合合并在一起就是全體有理數(shù)的集合嗎?
也可以教師說出一些數(shù),讓學(xué)生進(jìn)行判斷。
集合的概念不必深入展開。
創(chuàng)新探究 問題2:有理數(shù)可分為正數(shù)和負(fù)數(shù)兩大類,對嗎?為什么?
教學(xué)時,要讓學(xué)生總結(jié)已經(jīng)學(xué)過的數(shù),鼓勵學(xué)生概括,通過交流和討論,教師作適當(dāng)?shù)闹笇?dǎo),逐步得到如下的分類表。
有理數(shù) 這個分類可視學(xué)生的程度確定是否有必要教學(xué)。
應(yīng)使學(xué)生了解分類的標(biāo)準(zhǔn)不一樣時,分類的結(jié)果也是不同的,所以分類的標(biāo)準(zhǔn)要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學(xué)中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等
小結(jié)與作業(yè)
課堂小結(jié) 到現(xiàn)在為止我們學(xué)過的數(shù)都是有理數(shù)(圓周率除外),有理數(shù)可以按不同的標(biāo)準(zhǔn)進(jìn)行分類,標(biāo)準(zhǔn)不同,分類的結(jié)果也不同。
本課作業(yè)
1, 必做題:教科書第18頁習(xí)題1.2第1題
2, 教師自行準(zhǔn)備
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)
1,本課在引人了負(fù)數(shù)后對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念.分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí)使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視.關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不要過多展開。
2,本課具有開放性的特點,給學(xué)生提供了較大的思維空間,能促進(jìn)學(xué)生積極主動地參加學(xué)習(xí),親自體驗知識的形成過程,可避免直接進(jìn)行分類所帶來的枯燥性;同時還體現(xiàn)合作學(xué)習(xí)、交流、探究提高的特點,對學(xué)生分類能力的養(yǎng)成有很好的作用。
3,兩種分類方法,應(yīng)以第一種方法為主,第二種方法可視學(xué)生的情況進(jìn)行。
初中數(shù)學(xué)教案7
復(fù)習(xí)目標(biāo):
。1)了解方程、一元一次方程以及方程的解等基本概念。
。2)會解一元一次方程。
。3)會根據(jù)具體問題中的數(shù)量關(guān)系列出一元一次方程并求解。
重點、難點:
1.重點:
一元一次方程及方程的解的基本概念。
一元一次方程的解法。
會用一元一次方程解決實際問題。
2.難點:
一元一次方程的解法的靈活應(yīng)用。
尋找實際問題中的等量關(guān)系。
【典型例題】
例1.
分析: 明確一元一次方程的概念。方程中含有一個未知數(shù),未知數(shù)的次數(shù)是1,且含有未知數(shù)的式子為整式,未知數(shù)的系數(shù)不為0。
在這里特別注意:未知數(shù)的次數(shù)及系數(shù)。
這三個方程中含有兩個未知數(shù)x、y,要想成為一元一次方程就要使其中一個未知數(shù)的系數(shù)為0。
解:
例2.
分析: 此題要明確兩點:(1)當(dāng)方程中含有多個字母時,指出關(guān)于哪個字母的方程,這個字母就是方程的未知數(shù),而其它的字母是代替已知數(shù)的字母系數(shù),這類方程也叫字母系數(shù)方程。(2)方程的解,即使方程左右兩邊相等的未知數(shù)的值。
此題從問題出發(fā),求解關(guān)于x的方程即要求出x的值,而要求x的值要先求出m的`值,如何求m的值呢?已知y=1是關(guān)于y的方程的解,即關(guān)于y的方程中字母y=1,因此可將y=1代入方程,從而求出m的值。
解:
將m=1代入關(guān)于x的方程,得:
例3.
解:
注意:解一元一次方程的一般步驟為以上五步,但在解方程時,要注意靈活運用。
例4.
分析: 此題的括號較多,如果按照一般的做法先去小括號,再去中括號,最后去大括號的方法比較麻煩,所以要觀察分析方程找一種比較簡單的方法。
解:
例5.
分析: 此題中分母出現(xiàn)小數(shù),如果用一般的方法先去分母,則比較麻煩,公分母就不好找,所以采取一個巧妙的方法,先利用“分?jǐn)?shù)的基本性質(zhì)”將方程中分母中的小數(shù)化為整數(shù),再用去分母……解之。
解:
注:用分?jǐn)?shù)的基本性質(zhì)化簡用的是分子、分母擴(kuò)大相同倍數(shù)分?jǐn)?shù)值不變,與去分母不同。
解:
例6.已知某鐵路橋長1000米,現(xiàn)有列火車從橋上通過,測得火車從開始上橋到完全過橋共用1分鐘,整個火車完全在橋上的時間為40秒,求火車的速度。
分析: 列方程解應(yīng)用題的關(guān)鍵要找出題目中的等量關(guān)系,而由題意可知,此題有兩個不變的量,即車的速度和車身的長度。在題目中不變的量,即可為等量,從而列出方程。例如以車身長度為等量,可列方程,設(shè)車的速度為xm/s,60x-1000=1000-40x,以車的速度為等量,可列方程,設(shè)車身長為xm
解一: 設(shè)車的速度為xm/s
經(jīng)檢驗,符合題意。
答: 車的速度為20m/s。
解二: 設(shè)車身的長度為xm
經(jīng)檢驗,符合題意。
答: 車的速度為(1000+200)/60=20m/s
例7.某音樂廳五月初決定在暑假期間舉辦學(xué)生專場音樂會,入場券分為團(tuán)體票和零售票
售票的一半。如果在六月份內(nèi),團(tuán)體票按每張16元出售,并計劃在六月份售完全部余票,那么零售票應(yīng)按每張多少元出售才能使兩個月的票款收入持平?
分析: 此題的等量關(guān)系比較好找,即五六月份的票款相等,但團(tuán)體票及零售票的張數(shù)不知道,可用字母表示出來,設(shè)而不求。
解: 設(shè)團(tuán)體票共2a張,零售票共a張,零售票價x元
經(jīng)檢驗,符合題意。
答: 零售票價為19.2元。
初中數(shù)學(xué)教案8
生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個面的交線。
側(cè)棱:相鄰兩個側(cè)面的交線。棱柱的所有側(cè)棱長都相等。
底面:棱柱有上、下兩個底面,形狀相同。
側(cè)面:棱柱的側(cè)面都是平行四邊形。
立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點、無頂點。
棱柱:分為直棱柱、斜棱柱。直棱柱的側(cè)面是長方形。
特殊的四棱柱:長方體、正方體。正方體的每個面都是正方形。
圓柱:上、下兩個面都是圓形,側(cè)面展開圖是長方形。
圓錐:底面是圓形,側(cè)面展開圖是扇形。
截面:用一個平面去截一個幾何體,截出的面。
球:用一個平面去截,截面圖形是圓形。
正方體的截面:可以是正方形、長方形、梯形、三角形。
圓柱體的'截面:可以是長方形、圓形、橢圓形、三角形。
展開與折疊:兩個面出現(xiàn)在同一位置的展開圖形,是不可折疊的。
從三個方向看物體的形狀:正面看(主視圖)、左面看(側(cè)視圖)、上面看(俯視圖)
初中數(shù)學(xué)教案9
教學(xué) 建議
一、知識結(jié)構(gòu)
二、重點、難點分析
本節(jié) 教學(xué) 的重點是不等式的解集的概念及在數(shù)軸上表示不等式的解集的方法.難點為不等式的解集的概念.
1.不等式的解與方程的解的意義的異同點
相同點:定義方式相同(使方程成立的未知數(shù)的值,叫做方程的解);解的表示方法也相同.
不同點:解的個數(shù)不同,一般地,一個不等式有無數(shù)多個解,而一個方程只有一個或幾個解,例如, 能使不等式 成立,那么 是不等式的一個解,類似地 等也能使不等式 成立,它們都是不等式 的解,事實上,當(dāng) 取大于 的數(shù)時,不等式 都成立,所以不等式 有無數(shù)多個解.
2.不等式的解與解集的區(qū)別與聯(lián)系
不等式的解與不等式的解集是兩個不同的概念,不等式的解是指滿足這個不等式的未知數(shù)的某個值,而不等式的解集,是指滿足這個不等式的未知數(shù)的所有的值,不等式的所有解組成了解集,解集中包括了每一個解.
注意:不等式的解集必須滿足兩個條件:第一,解集中的任何一個數(shù)值,都能使不等式成立;第二,解集外的任何一個數(shù)值,都不能使不等式成立.
3.不等式解集的表示方法
。1)用不等式表示
一般地,一個含未知數(shù)的不等式有無數(shù)多個解,其解集是某個范圍,這個范圍可用一個最簡單的不等式表示出來,例如,不等式 的解集是 .
。2)用數(shù)軸表示
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圓.
如不等式 的解集 ,可以用數(shù)軸上表示4的點的左邊部分表示,因為 包含 ,所以在表示4的點上畫實心圈.
注意:在數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大,所以在數(shù)軸上表示不等式的解集時應(yīng)牢記:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
一、素質(zhì) 教育 目標(biāo)
(一)知識 教學(xué) 點
1.使學(xué)生了解不等式的解集、解不等式的概念,會在數(shù)軸上表示出不等式的解集.
2.知道不等式的“解集”與方程“解”的不同點.
。ǘ┠芰τ(xùn)練點
通過 教學(xué) ,使學(xué)生能夠正確地在數(shù)軸上表示出不等式的解集,并且能把數(shù)軸上的某部分?jǐn)?shù)集用相應(yīng)的不等式表示.
。ㄈ┑掠凉B透點
通過講解不等式的“解集”與方程“解”的關(guān)系,向?qū)W生滲透對立統(tǒng)一的辯證觀點.
(四)美育滲透點
通過本節(jié)課的學(xué)習(xí),讓學(xué)生了解不等式的解集可利用圖形來表達(dá),滲透數(shù)形結(jié)合的數(shù)學(xué)美.
二、學(xué)法引導(dǎo)
1. 教學(xué) 方法:類比法、引導(dǎo)發(fā)現(xiàn)法、實踐法.
2.學(xué)生學(xué)法:明確不等式的解與解集的區(qū)別和聯(lián)系,并能熟練地用數(shù)軸表示不等式的解集,在數(shù)軸上表示不等式的解集時,要特別注意:大于向右畫,小于向左畫;有等號的畫實心圓點,無等號的畫空心圓圈.
三、重點·難點·疑點及解決辦法
。ㄒ唬┲攸c
1.不等式解集的概念.
2.利用數(shù)軸表示不等式的解集.
。ǘ╇y點
正確理解不等式解集的概念.
。ㄈ┮牲c
弄不清不等式的解集與方程的解的區(qū)別、聯(lián)系.
。ㄋ模┙鉀Q辦法
弄清楚不等式的解與解集的概念.
四、課時安排
一課時.
五、教具學(xué)具準(zhǔn)備
投影儀或電腦、自制膠片、直尺.
六、師生互動活動設(shè)計
。ㄒ唬┟鞔_目標(biāo)
本節(jié)課重點學(xué)習(xí)不等式的解集,解不等式的概念并會用數(shù)軸表示不等式的解集.
。ǘ┱w感知
通過枚舉法來形象直觀地推出不等式的解集,再給出不等式解集的概念,從而更準(zhǔn)確地讓學(xué)生掌握該概念.再通過師生的互動學(xué)習(xí)用數(shù)軸表示不等式的解集,從而為今后求不等式組的解集打下良好的基礎(chǔ).
。ㄈ 教學(xué) 過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
。1)根據(jù)不等式的基本性質(zhì),把下列不等式化成 或 的形式.
、 、
。2)當(dāng) 取下列數(shù)值時,不等式 是否成立?
l,0,2,-2.5,-4,3.5,4,4.5,3.
學(xué)生活動:獨立思考并說出答案:(1)① ② .(2)當(dāng) 取1,0,2,-2.5,-4時,不等式 成立;當(dāng) 取3.5,4,4.5,3時,不等式 不成立.
大家知道,當(dāng) 取1,2,0,-2.5,-4時,不等式 成立.同方程類似,我們就說1,2,0,-2.5,-4是不等式的解,而3.5,4,4.5,3這些使不等式 不成立的數(shù)就不是不等式 的解.
對于不等式 ,除了上述解外,還有沒有解?解的個數(shù)是多少?將它們在數(shù)軸上表示出來,觀察它們的分布有什么規(guī)律?
學(xué)生活動:思考討論,嘗試得出答案,指名板演如下:
【教法說明】啟發(fā)學(xué)生用試驗方法,結(jié)合數(shù)軸直觀研究,把已說出的不等式 的.解2,0,1,-2.5,-4用“實心圓點”表示,把不是 的解的數(shù)值3.5,4,4.5,3用“空心圓圈”表示,好像是“挖去了”.
師生歸納:觀察數(shù)軸可知,用“實心圓點”表示的數(shù)都落在3的左側(cè),3和3右側(cè)的數(shù)都用空心圓圈表示,從而我們推斷,小于3的每一個數(shù)都是不等式 的解,而大于或等于3的任何一個數(shù)都不是 的解.可以看出,不等式 有無限多個解,這無限多個解既包括小于3的正整數(shù)、正小數(shù)、又包括0、負(fù)整數(shù)、負(fù)小數(shù);把不等式 的無限多個解集中起來,就得到 的解的集會,簡稱不等式 的解集.
2.探索新知,講授新課
(1)不等式的解集
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解的集合,簡稱這個不等式的解集.
①以方程 為例,說出一元一次方程的解的情況.
、诓坏仁 的解的個數(shù)是多少?能一一說出嗎?
。2)解不等式
求不等式的解集的過程,叫做解不等式.
解方程 求出的是方程的解,而解不等式 求出的則是不等式的解集,為什么?
學(xué)生活動:觀察思考,指名回答.
教師 歸納:正是因為一元一次方程只有惟一解,所以可以直接求出.例如 的解就是 ,而不等式 的解有無限多個,無法一一列舉出來,因而只能用不等式 或 揭示這些解的共同屬性,也就是求出不等式的解集.實際上,求某個不等式的解集就是運用不等式的基本性質(zhì),把原不等式變形為 或 的形式, 或 就是原不式的解集,例如 的解集是 ,同理, 的解集是 .
【教法說明】學(xué)生對一元一次方程的解印象較深,而不等式與方程的相同點較多,因而易將“不等式的解集”與“方程的解”混為一談,這里設(shè)置上述問題,目的是使學(xué)生弄清“不等式的解集”與“方程的解”的關(guān)系.
。3)在數(shù)軸上表示不等式的解集
、俦硎静坏仁 的解集:( )
分析:因為未知數(shù)的取值小于3,而數(shù)軸上小于3的數(shù)都在3的左邊,所以就用數(shù)軸上表示3的點的左邊部分來表示解集 .注意未知數(shù) 的取值不能為3,所以在數(shù)軸上表示3的點的位置上畫空心圓圈,表示不包括3這一點,表示如下:
②表示 的解集:( )
學(xué)生活動:獨立思考,指名板演并說出分析過程.
分析:因為未知數(shù)的取值可以為-2或大于-2的數(shù),而數(shù)軸上大于-2的數(shù)都在-2右邊,所以就用數(shù)鋼上表示-2的點和它的右邊部分來表示.如下圖所示:
注意問題:在數(shù)軸上表示-2的點的位置上,應(yīng)畫實心圓心,表示包括這一點.
【教法說明】利用數(shù)軸表示不等式解的解集,增強(qiáng)了解集的直觀性,使學(xué)生形象地看到不等式的解有無限多個,這是數(shù)形結(jié)合的具體體現(xiàn). 教學(xué) 時,要特別講清“實心圓點”與“空心圓圈”的不同用法,還要反復(fù)提醒學(xué)生弄清到底是“左邊部分”還是“右邊部分”,這也是學(xué)好本節(jié)內(nèi)容的關(guān)鍵.
3.嘗試反饋,鞏固知識
。1)不等式的解集 與 有什么不同?在數(shù)軸上表示它們時怎樣區(qū)別?分別在數(shù)軸上把這兩個解集表示出來.
。2)在數(shù)軸上表示下列不等式的解集.
、 、 、 、
(3)指出不等式 的解集,并在數(shù)軸上表示出來.
師生活動:首先學(xué)生在練習(xí)本上完成,然后 教師 抽查,最后與出示投影的正確答案進(jìn)行對比.
【教法說明】 教學(xué) 時,應(yīng)強(qiáng)調(diào)2.(4)題的正確表示為:
我們已經(jīng)能夠在數(shù)軸上準(zhǔn)確地表示出不等式的解集,反之若給出數(shù)軸上的某部分?jǐn)?shù)集,還要會寫出與之對應(yīng)的不等式的解集來.
4.變式訓(xùn)練,培養(yǎng)能力
。1)用不等式表示圖中所示的解集.
【教法說明】強(qiáng)調(diào)“· ”“ °”在使用、表示上的區(qū)別.
。2)單項選擇:
、俨坏仁 的解集是(。
A. B. C. D.
、诓坏仁 的正整數(shù)解為(。
A.1,2 B.1,2,3 C.1 D.2
、塾貌坏仁奖硎緢D中的解集,正確的是(。
A. B. C. D.
、苡脭(shù)軸表示不等式的解集 正確的是( )
學(xué)生活動:分析思考,說出答案.( 教師 給予糾正或肯定)
【教法說明】此題以搶答形式茁現(xiàn),更能激發(fā)學(xué)生探索知識的熱情.
。ㄋ模┛偨Y(jié)、擴(kuò)展
學(xué)生小結(jié), 教師 完善:
1.? 本節(jié)重點:
。1)了解不等式的解集的概念.
。2)會在數(shù)軸上表示不等式的解集.
2.注意事項:
弄清“ · ”還是“ °”,是“左邊部分”還是“右邊部分”.
七、布置作業(yè)
初中數(shù)學(xué)教案10
教學(xué)目標(biāo)
1.理解二元一次方程及二元一次方程的解的概念;
2.學(xué)會求出某二元一次方程的幾個解和檢驗?zāi)硨?shù)值是否為二元一次方程的解;
3.學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學(xué)重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.
教學(xué)過程
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請算的`最快最準(zhǔn)確的同學(xué)講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時,y=_
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習(xí)。
初中數(shù)學(xué)教案11
一、教學(xué)案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學(xué)設(shè)計的區(qū)別
教案和教學(xué)設(shè)計都是事先設(shè)想的教學(xué)思路,是對準(zhǔn)備實施的教學(xué)措施的簡要說明;教學(xué)案例則是對已經(jīng)發(fā)生的教學(xué)過程的反映。一個寫在教之前,一個寫在教之后;一個是預(yù)期達(dá)到什么目標(biāo),一個是結(jié)果達(dá)到什么水平。教學(xué)設(shè)計不宜于交流,教學(xué)案例適宜于交流。
3、案例與教學(xué)實錄的區(qū)別
案例與教學(xué)實錄的體例比較接近,它們都是對教學(xué)情景的描述,但教學(xué)實錄是有聞必錄,而案例則是有所選擇的,教學(xué)案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學(xué)案例的特點是
——真實性:案例必須是在課堂教學(xué)中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學(xué)案例的結(jié)構(gòu)要素
從文章結(jié)構(gòu)上看,數(shù)學(xué)案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關(guān)情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學(xué)校還是普通學(xué)校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準(zhǔn)備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉(zhuǎn)變學(xué)困生,還是強(qiáng)調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學(xué)生的獨立學(xué)習(xí)情況,等等;蛘呤且粋什么樣的數(shù)學(xué)任務(wù)解決過程和方法,在課程標(biāo)準(zhǔn)中數(shù)學(xué)任務(wù)認(rèn)知水平的要求怎么樣,在課堂教學(xué)中數(shù)學(xué)任務(wù)認(rèn)知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學(xué)校開展研究性學(xué)習(xí)活動,不同的研究課題、研究小組、研究階段,會面臨不同的'問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應(yīng)該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進(jìn)行篩選。首先需要教師對課堂教學(xué)中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關(guān)鍵性的細(xì)節(jié)寫清楚。比如介紹教師如何指導(dǎo)學(xué)生掌握學(xué)習(xí)數(shù)學(xué)的方法,就要把學(xué)生怎么從“不會”到“會”的轉(zhuǎn)折過程,要把學(xué)習(xí)發(fā)生發(fā)展過程的細(xì)節(jié)寫清楚,要把教師觀察到的學(xué)生學(xué)習(xí)行為,學(xué)習(xí)行為反映的學(xué)生思想、情感、態(tài)度寫清楚,或者把小組合作學(xué)習(xí)的突出情況寫清楚,或者把個別學(xué)生獨立學(xué)習(xí)的典型行為寫清楚。不能把“任務(wù)”布置了一番,把“方法”介紹了一番,說到“任務(wù)”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結(jié)果。一般來說,教案和教學(xué)設(shè)計只有設(shè)想的措施而沒有實施的結(jié)果,教學(xué)實錄通常也只記錄教學(xué)的過程而不介紹教學(xué)的效果;而案例則不僅要說明教學(xué)的思路、描述教學(xué)的過程,還要交代學(xué)生學(xué)習(xí)的結(jié)果,即這種教學(xué)措施的即時效果,包括學(xué)生的反映和教師的感受等。讀者知道了結(jié)果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學(xué)指導(dǎo)思想、過程、結(jié)果,對其利弊得失,作者要有一定的看法和分析。反思是在記敘基礎(chǔ)上的議論,可以進(jìn)一步揭示事件的意義和價值。比如同樣是一個學(xué)困生轉(zhuǎn)化的事例,我們可以從社會學(xué)、教育學(xué)、心理學(xué)、學(xué)習(xí)理論等不同的理論角度切入,揭示成功的原因和科學(xué)的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學(xué)教學(xué)案例主題的選擇
新課程理念下的初中數(shù)學(xué)教學(xué)案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學(xué)生動手實踐、自主探究、合作交流的教學(xué)方式;
(2)體現(xiàn)教師幫助學(xué)生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗;
(3)體現(xiàn)讓學(xué)生親身經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,采用“問題情境——建立模型——解釋、應(yīng)用與拓展”的模式教學(xué)的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學(xué)與信息技術(shù)整合的教學(xué)方法;
(5)體現(xiàn)教師在教學(xué)過程中的組織者、引導(dǎo)者與合作者的作用;
(6)體現(xiàn)教學(xué)中對學(xué)生情感、態(tài)度的關(guān)注和評價,以及怎樣幫助不同的人在數(shù)學(xué)上獲得不同的發(fā)展,等等。
初中數(shù)學(xué)教案12
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實驗教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設(shè)計思想
本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級學(xué)生已具有了較強(qiáng)的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開展教學(xué)活動,通過設(shè)計有針對性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動不但培養(yǎng)學(xué)生化簡意識,提升數(shù)學(xué)運算技能而且讓學(xué)生深刻體會到數(shù)學(xué)是解決實際問題的重要工具,增強(qiáng)應(yīng)用數(shù)學(xué)的意識。
三、教學(xué)目標(biāo):
。ㄒ唬┲R技能目標(biāo):
1、理解同類項的含義,并能辨別同類項。
2、掌握合并同類項的方法,熟練的合并同類項。
3、掌握整式加減運算的方法,熟練進(jìn)行運算。
。ǘ┻^程方法目標(biāo):
1、通過探究同類項定義、合并同類項的'方法的活動,培養(yǎng)學(xué)生觀察、歸納、探究的能力。
2、通過合并同類項、整式加減運算的練習(xí)活動,提高學(xué)生運算技能,提升運算的準(zhǔn)確率培養(yǎng)學(xué)生化簡意識,發(fā)展學(xué)生的抽象概括能力。
3、通過研究引例、探究例1的活動,發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號感。
。ㄈ┣楦袃r值目標(biāo):
1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識和敢于探索未知問題的精神。
2、通過學(xué)習(xí)活動培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
四、教學(xué)重、難點:
合并同類項
五、教學(xué)關(guān)鍵:
同類項的概念
六、教學(xué)準(zhǔn)備:
教師:
1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。
2、制作大小不等的兩個長方體紙盒實物模型,并能展開。
3、設(shè)計多媒體教學(xué)課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)
學(xué)生:
1、復(fù)習(xí)有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)
2、每小組制作大小不等的兩個長方體紙盒模型。
初中數(shù)學(xué)教案13
教學(xué)目標(biāo)
(一)知識認(rèn)知要求
1、回顧收集數(shù)據(jù)的方式、
2、回顧收集數(shù)據(jù)時,如何保證樣本的代表性、
3、回顧頻率、頻數(shù)的概念及計算方法、
4、回顧刻畫數(shù)據(jù)波動的統(tǒng)計量:極差、方差、標(biāo)準(zhǔn)差的概念及計算公式、
5、能利用計算器或計算機(jī)求一組數(shù)據(jù)的算術(shù)平均數(shù)、
(二)能力訓(xùn)練要求
1、熟練掌握本章的知識網(wǎng)絡(luò)結(jié)構(gòu)、
2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計意識和數(shù)據(jù)處理能力、
3、經(jīng)歷調(diào)查、統(tǒng)計等活動,在活動中發(fā) 展學(xué)生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內(nèi)容的回顧與思考,發(fā)展學(xué) 生用數(shù)學(xué)的意識、
2、在活動中培養(yǎng)學(xué)生團(tuán)隊精神、
教學(xué)重點
1、建立本章的知識框架圖、
2、體會收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng) 計量在實際情境中的意義和應(yīng)用、
教學(xué)難點
收集數(shù)據(jù)的方式、抽樣時保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計量在不同情境中的應(yīng)用、
教學(xué)過程
一、導(dǎo)入新課
本章的`內(nèi)容已全部學(xué)完、現(xiàn)在如何讓你調(diào)查一個情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報告,我想大家現(xiàn)在心里應(yīng)該有數(shù)、
例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應(yīng)如何操作?
先選擇調(diào)查方式,當(dāng)然這個調(diào)查應(yīng)采用抽樣調(diào)查的方式,因為我們不可能調(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、
同學(xué)們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計分析,然后把調(diào)查結(jié)果匯報上來,我們可以比一比,哪一個組表現(xiàn)最好?
二、講授新課
1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、
2、抽樣調(diào)查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數(shù)、頻率有關(guān)的幾個生活實例?
4、刻畫數(shù)據(jù)波動的統(tǒng)計量有 哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學(xué)們先獨 立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、
。ń處熆蓞⑴c到學(xué)生的討論中,發(fā)現(xiàn)同學(xué)們前面知識掌握不好的地方,及時補(bǔ)上)、
收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、
例如:調(diào)查我校八年級同學(xué)每天做家庭作業(yè)的時間,我們就可以用普查的形式、
在這次調(diào)查中,總體:我校八年級全體學(xué)生每天做家庭作業(yè)的時間;個體:我校八年級每個學(xué)生每天做家庭作業(yè)的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數(shù)目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進(jìn)行普查;有時調(diào)查具有破壞性,不允許普查,此時可用抽樣調(diào)查、
例如把上面問題改成“調(diào)查全國八年級同學(xué)每天做家庭作業(yè)的時間”,由于個體數(shù)目太多,普查的工作量也較大,此時就采取抽樣調(diào)查,從總體中抽取一個樣本,通過樣本的特征數(shù)字來估計總體,例如平均數(shù)、中位數(shù)、眾數(shù) 、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因為只 有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會失去可靠性和準(zhǔn)確性、
例如對我們班里某門學(xué)科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學(xué)生的成績落在哪一個分?jǐn)?shù)段,落在這個分?jǐn)?shù)段的分?jǐn)?shù)有幾個,表明數(shù)據(jù)落在這個小組的頻數(shù)就是多少,數(shù)據(jù)落在這個小組的頻率就是頻數(shù)與數(shù)據(jù)總個數(shù)的商、
刻畫數(shù)據(jù)波動的統(tǒng)計量有極差、方差、標(biāo)準(zhǔn)差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定、
例如:某農(nóng)科所在8個試驗點,對甲、乙兩種玉米進(jìn)行對比試驗,這兩種玉米在各試驗點的畝產(chǎn)量如下(單位:千克)
甲:450 460 450 430 450 460 440 460
乙:440 470 460 440 430 450 470 4 40
在這個試驗點甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、
還可以用方差來比較哪一種玉米穩(wěn)定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定、
三、建立知識框架圖
通 過剛才的幾個問題回顧思考了我們這一章的重點內(nèi)容,下面構(gòu)建本章的知識結(jié)構(gòu)圖、
四、隨堂練習(xí)
例1一家電腦生產(chǎn)廠家在某城市三個經(jīng)銷本廠產(chǎn)品的大商場調(diào)查,產(chǎn)品的銷量占這三個 大商場同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷售量占40%、請你根據(jù)所學(xué)的統(tǒng)計知識,判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統(tǒng)計知識,作出科學(xué)的判斷, 同時運 用統(tǒng)計原理給予準(zhǔn)確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典” 的斗爭中,疫情變化牽動著全國人民的心 、請根據(jù)下面的疫情統(tǒng)計圖表回答問題:
。1)圖10是5月11日至5月29日全國疫情每天新增數(shù)據(jù)統(tǒng)計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;
、谠诒绢}的統(tǒng)計中,新增確診病例的人數(shù)的中位數(shù)是___________;
③本題在對新增確診病例的統(tǒng)計中,樣本是__________,樣本容量是__________、
。2)下表是我國一段時間內(nèi)全國確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計表、(按人數(shù)分組)
、100人以下的分組組距是________;
、谔顚懕窘y(tǒng)計表中未完成的空格;
③在統(tǒng)計的這段時期中,每天新增確診
病例人數(shù)在80人以下的天數(shù)共有_________天、
解:(1)①7 ②26 ③5月11日至29日每天新增確診病例人數(shù) 19
(2)①10人 ②11 40 0、125 0、325 ③25
五.課時小結(jié)
這節(jié)課我們通過回顧與思考這一章的重點內(nèi)容,共同建立的知識框架圖,并進(jìn)一步用統(tǒng)計的思想和知識解決問題,作出決策、
六.課后作業(yè):
七.活動與探究
從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質(zhì)量大約是
A、300克 B、360千克C、36千克 D、30千克
初中數(shù)學(xué)教案14
第一課時
師:請同學(xué)們利用2分鐘時間完成“課前小測”。
生:(學(xué)生獨立完成)。
師:時間到,xxx同學(xué)來說一說你的答案。
生:......
師:我們前面已經(jīng)學(xué)習(xí)過平移等有關(guān)內(nèi)容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究。今天我們學(xué)習(xí)第九章《實際問題與一元一次不等式》(課件出示課題),請同學(xué)們看“自學(xué)指導(dǎo)”的要求,利用5分鐘完成自學(xué)。
生:(學(xué)生邊閱讀課本邊用筆在重點處作記號)。
師:(全班巡視)。
師:時間到,剛才同學(xué)們再一次自學(xué)了課本上內(nèi)容,現(xiàn)在我們看下面的問題,誰有解題思路?(課件出示“問題”,并給學(xué)生1分鐘思考)
生:把一個圖形繞著一個點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn)。點O叫旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫旋轉(zhuǎn)角。
師:很好,請看幻燈片,議一議......,(課件出示“議一議”,并給學(xué)生1分鐘思考)
師:哪位學(xué)生能解決?
生:旋轉(zhuǎn)中心是“O”;A、B旋轉(zhuǎn)到了D、E;旋轉(zhuǎn)角是∠AOD;AO和DO相等,BO和EO相等;∠AOD=∠BOE
師:好,誰有疑問的舉手問。請繼續(xù)看探究,同桌之間合作完成。進(jìn)行探究,觀察每組圖形中
、賹(yīng)點與旋轉(zhuǎn)中心所連線段有什么關(guān)系?
、趯(yīng)點與旋轉(zhuǎn)中心連線所成的角有什么關(guān)系?
生:(學(xué)生合作完成)。
師:哪位同學(xué)來講一講你的答案(稍等,讓學(xué)生舉手)。xxx同學(xué)請回答
生:對應(yīng)點到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;
旋轉(zhuǎn)前后的圖形全等。
師:很好,這就是旋轉(zhuǎn)的性質(zhì),請在書中找到并作上記號。接下來我們看看下面例題。
。ㄕn件展示例1)請同學(xué)們試完成
生:(學(xué)生完成,)
師:(全班巡視,從中發(fā)現(xiàn)問題所在)
師:本題關(guān)鍵是確定△ADE三個頂點的對應(yīng)點,即它們旋轉(zhuǎn)后的位置。,看老師示范。
。ㄔ诤诎迳鲜痉叮
師:會了嗎?
生:會了。
師:那現(xiàn)在我們一起來完成下面的問題。
。ㄕn件顯示鞏固練習(xí))
師:時間到,請某同學(xué)把練習(xí)展示。
(把學(xué)生的答案在投影上投出,與學(xué)生一起對照答案評講)
師:請同學(xué)們思考下面圖案可以看做是一個菱形通過幾次旋轉(zhuǎn)得到的?每次旋轉(zhuǎn)了多少度?
(課件展示圖形)
生1:600
生2:1200
生3:2400
師:很好,也就是可只要是旋轉(zhuǎn)600的倍數(shù)就可能,那么香港區(qū)徽可以看作是什么“基本圖案”通過怎樣的旋轉(zhuǎn)而得到的?
生1:72 0
師:只能是720嗎
生2:可以是720倍數(shù)。
師:非常好,現(xiàn)在請同學(xué)們完成P58練習(xí)。
。▽W(xué)生完成后,老師評講)
師:這節(jié)課,主要學(xué)習(xí)了什么?
生:......
師:請利用10分鐘完成練習(xí)冊達(dá)標(biāo)體驗1—5。
第二課時
師:請同學(xué)們利用2分鐘時間完成“課前小測”。
生:(學(xué)生獨立完成)。
師:時間到,xxx同學(xué),拿你的試卷答案上來給老師投影給大家看看你的答案是否真確。他做對沒有?
生:答案對了。
師:今天我們學(xué)習(xí)圖形的旋轉(zhuǎn)第2課時(課件出示課題),請同學(xué)們一起來欣賞下面幾個圖片。
生:(學(xué)生與老師一起看圖片)。
師:生活中我們有很多美麗的圖片,這上面的圖片與我們學(xué)習(xí)的旋轉(zhuǎn)有聯(lián)系嗎?
生:......
師:答案是有的,請同學(xué)們看看下面兩個圖畫的形成。
(課件動畫顯示圖形的形成)
師:請同學(xué)來講講這兩個圖片是經(jīng)過什么過成形成的。
生:是由一個基本圖形繞一個點轉(zhuǎn)1800得到。
師:很好,那這樣一個圖形我們也給出了一個名稱,(課件展示出概念)
師:現(xiàn)在我們來探索一下一個圖形旋轉(zhuǎn)后的性質(zhì)。請每人準(zhǔn)備一把三角尺自己旋轉(zhuǎn)一下,并將旋轉(zhuǎn)前的圖形和旋轉(zhuǎn)后的圖形都畫下來,然后進(jìn)行比較。
生:(學(xué)生各自完成)。
師:請同學(xué)們說說,你們發(fā)現(xiàn)了什么?
生1:旋轉(zhuǎn)前后兩圖形完全一樣。
生2:旋轉(zhuǎn)前后三角尺的位置變了,但是有一個點還是連著的。
師:是的,很好,那是旋轉(zhuǎn)中心
生3:三角尺的一條長直角邊原來是豎著的,后來橫著了。
師:很好,通過大家的探索我們可能發(fā)現(xiàn)
旋轉(zhuǎn)前、后的圖形全等。
對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
每一對對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角彼此相等。
師:現(xiàn)在我們得用這以上的.特征來試試畫一畫旋轉(zhuǎn)后的圖形請,畫出AB繞點O逆時針旋轉(zhuǎn)100°后的圖形。
師:(利用課件演示如何畫旋轉(zhuǎn)后的圖形)作圖關(guān)健是作出對應(yīng)點。
師:下面由同學(xué)們來試試畫出△ABC繞點C按順時針方向旋轉(zhuǎn)120°后的對應(yīng)的三角形。
生:(學(xué)生在下面動手)
師:xxx同學(xué)來拿試卷來展示你的答案。對了沒有?
生:對了。
師:很好,接著看我們的來那兩個鞏固題。10分鐘后(實物投影一個學(xué)生的練習(xí)卷)看這位同學(xué)的答案,對嗎?(學(xué)生給予判斷,老師用紅筆在練習(xí)卷上批改)。通過這一節(jié)課的學(xué)習(xí),你有什么收獲?還有哪些困惑?
生1:會作旋轉(zhuǎn)后的圖形。
生2:作圖重點是找到對應(yīng)點。
師:很好,今天的課至此,希望同學(xué)們能認(rèn)真完成課后作業(yè)。
初中數(shù)學(xué)教案15
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點和難點
重點:
。1)二次根的意義;
(2)二次根式中字母的.取值范圍。
難點:確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
。ㄒ唬⿵(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計算
。ǘ┮胄抡n
新課:二次根式
定義:式子叫做二次根式。
對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
。1)式子只有在條件a≥0時才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。
。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子在實數(shù)范圍有意義?
解:略。
說明:這個問題實質(zhì)上是在x是什么數(shù)時,x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時,下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當(dāng)a、b為任意實數(shù)時,是二次根式。
(2)—3x≥0,x≤0,即x≤0時,是二次根式。
(3),且x≠0,∴x>0,當(dāng)x>0時,是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時,是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案02-21
初中數(shù)學(xué)教案08-12
初中數(shù)學(xué)教案[經(jīng)典]02-21
角初中數(shù)學(xué)教案12-30
初中數(shù)學(xué)教案模板11-02
人教版初中數(shù)學(xué)教案07-17
初中數(shù)學(xué)教案【推薦】11-22
【薦】初中數(shù)學(xué)教案11-26
初中數(shù)學(xué)教案【精】11-19
初中數(shù)學(xué)教案【熱】11-17