【薦】初中數(shù)學教案
作為一名無私奉獻的老師,常常需要準備教案,通過教案準備可以更好地根據(jù)具體情況對教學進程做適當?shù)谋匾恼{(diào)整。教案應該怎么寫才好呢?以下是小編整理的初中數(shù)學教案,歡迎閱讀,希望大家能夠喜歡。
初中數(shù)學教案1
教學目標:
1.在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角.
2.理解對頂角相等,并能運用它解決一些問題.
重點:
鄰補角、對頂角的概念,對頂角的性質(zhì)與應用.
難點:
理解對頂角相等的性質(zhì)的探索.
教學過程:
一、創(chuàng)設情境,引入新課
引導語:
我們生活的世界中,蘊涵著大量的相交線和平行線.
本章要研究相交線所成的角和它的特征,相交線的一種特殊形式即垂直,垂線的性質(zhì),研究平行線的性質(zhì)和平行線的判定以及圖形的平移問題.
二、嘗試活動,探索新知
教師出示一塊布片和一把剪刀,表演剪刀剪布的過程.
教師提出問題:剪布時,用力握緊把手,發(fā)生了什么變化?進而使什么也發(fā)生了變化?
學生觀察、思考、回答,得出:
握緊把手時,隨著兩個把手之間的角逐漸變小,剪刀刀刃之間的角相應變。绻淖冇昧Ψ较,隨著兩個把手之間的角逐漸變大,剪刀刀刃之間的角也相應變大.
教師提問:我們可以把剪刀抽象成什么簡單的圖形?
學生回答:畫成兩條相交的直線,學生畫直線AB、CD相交于點O,并說出圖中4個角.
教師提問:兩兩相配共能組成幾對角?各對角的.位置關系如何?根據(jù)不同的位置怎么將它們分類?
學生用量角器分別量一量各角的度數(shù),發(fā)現(xiàn)各對角的度數(shù)有什么關系?(學生得出結論:相鄰的兩個角互補,對頂?shù)膬蓚角相等)
學生根據(jù)觀察和度量完成下表:
兩條直線相交、所形成的角、分類、位置關系、數(shù)量關系
教師提問:
如果改變∠AOC的大小,會改變它與其他角的位置關系和數(shù)量關系嗎?
學生思考回答:
只會改變數(shù)量關系而不會改變位置關系.
師生共同定義鄰補角、對頂角:
有一條公共邊,而且另一邊互為反向延長線的兩個角叫做鄰補角.
如果兩個角有一個公共頂點,而且一個角的兩邊分別是另一個角的兩邊的反向延長線,那么這兩個角叫做對頂角.
教師提問:
你同意下列說法嗎?如果錯誤,如何訂正?
1.鄰補角的“鄰”就是“相鄰”,就是它們有一條“公共邊”,“補”就是“互補”,就是這兩個角的另一條邊在同一條直線上.
2.鄰補角可看成是平角被過它的頂點的一條射線分成的兩個角.
3.鄰補角是互補的兩個角,互補的兩個角也是鄰補角.
學生思考回答:1、2是對的,3是錯的.
第3個應改成:鄰補角是互補的兩個角,互補的兩個角不一定是鄰補角.
教師讓學生說一說在學習對頂角的概念后,通過實際操作獲得的直觀體驗.
教師把說理過程規(guī)范地板書:
在右圖中,∠AOC的鄰補角是∠BOC和∠AOD,所以∠AOC與∠BOC互補,∠AOC與∠AOD互補,根據(jù)“同角的補角相等”,可以得出∠AOD=∠BOC,類似地有∠AOC=∠BOD.
教師板書對頂角的性質(zhì):
對頂角相等.
強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:
對頂角的概念是確定兩角的位置關系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關系.
三、例題講解
【例】 如圖,直線a,b相交,∠1=40°,求∠2,∠3,∠4的度數(shù).
【答案】 由鄰補角的定義,得∠2=180°-∠1=180°-40°=140°;由對頂角相等,得∠3=∠1=40°,∠4=∠2=140°.
四、鞏固練習
1.判斷下列圖中是否存在對頂角.
2.按要求完成下列各題.
(1)兩條直線相交,構成哪兩種特殊位置關系的角?指出下圖中具有這兩種位置關系的角.
eq o(sup7(,圖(1)) ,圖(2))
(2)如圖,若∠AOD= 90°,那么直線AB與CD的位置關系如何?
【答案】
1.都不存在對頂角.
2.(1)對頂角,鄰補角.
對頂角:∠AOC和∠BOD,∠AOD和∠BOC.
鄰補角:∠AOC和∠AOD,∠AOC和∠BOC,∠AOD和∠BOD,∠BOC和∠BOD.
(2)垂直.
五、課堂小結
教師引導學生進行本節(jié)課的小結并強調(diào)對頂角的概念與對頂角的性質(zhì)不能混淆:對頂角的概念是確定兩角的位置關系,對頂角的性質(zhì)是確定互為對頂角的兩角的數(shù)量關系.
教學反思
通過本節(jié)課的學習,大部分學生能積極主動地參與到學習活動中來,并能積極主動地提出各類問題并解決問題,達到了基本的教學效果.但是由于對新概念的理解不是很深刻,所以在應用方面存在不足,針對這一情況,教師應選擇典型的例題,詳細講解,指導學生探求解題的思路和方法,加深對概念的理解,做到熟練的應用。
初中數(shù)學教案2
教學目標
1.使學生正確理解的意義,掌握的三要素;
2.使學生學會由上的已知點說出它所表示的數(shù),能將有理數(shù)用上的點表示出來;
3.使學生初步理解數(shù)形結合的思想方法.
教學重點和難點
重點:初步理解數(shù)形結合的思想方法,正確掌握畫法和用上的點表示有理數(shù).
難點:正確理解有理數(shù)與上點的對應關系.
課堂教學過程 設計
一、從學生原有認知結構提出問題
1.小學里曾用“射線”上的點來表示數(shù),你能在射線上表示出1和2嗎?
2.用“射線”能不能表示有理數(shù)?為什么?
3.你認為把“射線”做怎樣的改動,才能用來表示有理數(shù)呢?
待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內(nèi)容——.
二、講授新課
讓學生觀察掛圖——放大的`溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數(shù),根據(jù)溫度計的液面的不同位置就可以讀出不同的數(shù),從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.
與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零.具體方法如下(邊說邊畫):
1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數(shù),也可偏向左邊)用這點表示0(相當于溫度計上的0℃);
2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);
3.選取適當?shù)拈L度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…
提問:我們能不能用這條直線表示任何有理數(shù)?(可列舉幾個數(shù))
在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.
進而提問學生:在上,已知一點P表示數(shù)-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數(shù)是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?
通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.
三、運用舉例 變式練習
例1 畫一個,并在上畫出表示下列各數(shù)的點:
例2 指出上A,B,C,D,E各點分別表示什么數(shù).
課堂練習
示出來.
2.說出下面上A,B,C,D,O,M各點表示什么數(shù)?
最后引導學生得出結論:正有理數(shù)可用原點右邊的點表示,負有理數(shù)可用原點左邊的點表示,零用原點表示.
四、小結
指導學生閱讀教材后指出:是非常重要的數(shù)學工具,它使數(shù)和直線上的點建立了對應關系,它揭示了數(shù)和形之間的內(nèi)在聯(lián)系,為我們研究問題提供了新的方法.
本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數(shù)都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數(shù),至于上的哪些點不能表示有理數(shù),這個問題以后再研究.
五、作業(yè)
1.在下面上:
(1)分別指出表示-2,3,-4,0,1各數(shù)的點.
(2)A,H,D,E,O各點分別表示什么數(shù)?
2.在下面上,A,B,C,D各點分別表示什么數(shù)?
3.下列各小題先分別畫出,然后在上畫出表示大括號內(nèi)的一組數(shù)的點:
(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};
初中數(shù)學教案3
教學目標
。ㄒ唬┲R與能力
1.通過對不等式的復習和具體實例總結一元一次不等式組以及一元一次不等式組的解集的概念。2.通過例題教會學生解一元一次不等式組,并教會學生通過在數(shù)軸上表示不等式的解集得到不等式組的解集,讓學生感受數(shù)形結合的作用。
。ǘ┻^程與方法
1.創(chuàng)設情境,通過實例引導學生考慮多個不等式聯(lián)合的解法。2.通過例題總結解一元一次不等式組的方法,并總結一元一次不等式組的解與一元一次不等式的解之間的關系。
。ㄈ┣楦小B(tài)度與價值觀
1.通過數(shù)軸的表示不等式組的解,讓學生加深對數(shù)形結合的作用的理解,使他們逐步熟悉和掌握這一重要的思想方法。2.在對例題的講解中,使學生認識一元一次不等式組的解集即每個不等式解集的公共部分,從而滲透“交集”的思想。
3.在解不等式組的過程中讓學生體會數(shù)學解題的直觀性和簡潔性的數(shù)學美 教學重、難點 重點:掌握一元一次不等式組的解法,會用數(shù)軸表示一元一次不等式組解集 的情況。難點 :1.弄清一元一次不等式的解集與一元一次不等式組的解集之間的關系。2.靈活運用一元一次不等式組的知識解決問題。
教學過程
一.設置情景,引入課題
學生活動:請學生觀看購物街轉轉盤游戲.(在看之前先讓學生看一看游戲規(guī)則:轉輪上平均分布著5、10、15一直到100共20個數(shù)字。每位選手最多有兩次機會。選手轉動轉輪的數(shù)字之和,最大且不超過100者為勝出,可以獲得相應的獎品。選手每次必須把轉輪轉動1圈才有效.)
設第三位選手第二次轉的數(shù)字為x,他要勝出應滿足什么條件? 預設學生
1x?10?75,預設學生2
x?10?教師提出問題:這兩個條件只需滿足一個還是缺一不可?
預設學生:同時具備??x?10?75
x?10?100?教師活動:
1、講解聯(lián)立符號的作用,并引入課題.2、給出定義:由幾個含有同一未知數(shù)的一元一次不等式所組成的一組不等式,叫做一元一次不等式組.【設計意圖】從一個學生感興趣的游戲入手.問題的提出具有一定的現(xiàn)實性和探究性,目的是激發(fā)學生探究新知的欲望,在教師的引導下,將生活中的問題轉化為數(shù)學問題,從而引出本課題.學生活動
用心找一找:下列不等式組中哪些是一元一次不等式組?
?3?x?4?2x?x?2?1?2y?7?6?x?2?2a?7?1?(1)?(2)?(3)?1(4)?(5)??5x?3?4x?1 3x?3?1x?33a?3?0?1????7?2x?6?3x??x?預設學生1:(2)(3)(4)(5)預設學生2:(2)(4)(5)預設學生3:(2)(4)
【設計意圖】教師組織學生分組討論,明析一元一次不等式組的定義.使學生進一步明確“幾個含有同一個未知數(shù)的一元一次不等式組成.”
二、探索過程
問題一:??x?10?75這兩個不等式的解分別是什么呢?
x?10?100??x?65 ?x?90?問題二:怎么表示不等式組的解呢?
什么是不等式組的解呢?
【設計意圖】通過這兩個問題的探討,讓學生在解不等式的過程中得出不等式組的解法和不等式組的解的表示方法.文字語言:大于65小于或等于90的數(shù).圖形語言: O***0
數(shù)學式子:65<x≤90 學生活動:探究不等式組的解
問題:求下列不等式組的解,并找出其中的'規(guī)律(1)??x?3?x?2?x?3?x?3(2)?(3)?(4)? ?x?7?x??5?x?5?x?7學生預設1:通過數(shù)軸,能求出不等式組的解
學生預設2:找不出其中的規(guī)律
【設計意圖】讓學生利用數(shù)軸尋找不等式組的解,并表示出來,引導學生找出其中的規(guī)律,培養(yǎng)學生善于現(xiàn)問題、總結規(guī)律的能力
三、練習鞏固,拓展提高
學生活動:1.寫出下列不等式組的解
(1)不等式組??x??5的解在數(shù)軸上表示為____________則不等式組的解為 x??2??x??5的解在數(shù)軸上表示為_______________則不等式組的解?x??2(2)不等式組?為
(3)不等式組??x??1的解為 x?2??x??1的解為 x?2?(4)不等式組 ?2.選擇題:(1)不等式組??x?2的解是()x?2??2 ?2 C.無解 ?2(2)不等式組??x??2的負整數(shù)解是()x??3?A.–2,0,-1 B.-2 C.–2,-1 D.不能確定
【設計意圖】讓學生及時鞏固,準確找出不等式組的解,在找不等式組的解的過程中引入整數(shù)解.四、合作小結,課外探索 學生活動:
1每位同學寫一個以x為未知數(shù)的一元一次不等式;
2、同桌的兩個不等式組在一起叫做什么?三位同學的不等式組在一起呢?
3、每位同學把你所寫的不等式解出來;
4、同桌所組成的不等式組的解是什么?
【設計意圖】通過問題串,在生生、師生互動的情況下,復習一元一次不等式組的定義和解.增強了學生之間的合作交流.五、布置作業(yè)
3個小組計劃在10天內(nèi)生產(chǎn)500件產(chǎn)品(每天生產(chǎn)量相同),按原先的生產(chǎn)速度,不能完成任務;如果每個小組每天比原先多生產(chǎn)1件產(chǎn)品,就能提前完成任務.每個小組原先每天生產(chǎn)多少件產(chǎn)品?
【設計意圖】通過實際問題的解決,有利于學生體會到數(shù)學來源于生活,并能有效地復習鞏固本堂課所學的知識和方法.【板書設計】
一元一次不等式組 ?x?10?75??x?10?100?x?65 文字語言:大于??x?9065小于或等于90的數(shù).圖形語言: O***0數(shù)學式子:65<x≤90
求下列不等式組的解,并找出其中的規(guī)律(1)??x?3?x?7(2)??x?2?x?3?x??5(3)??x?5(4)規(guī)律:大大取大,小小取;
大小小大中間找
大大小小為
初中數(shù)學教案4
教學目標:
1、 在現(xiàn)實情境中理解線段、射線、直線等簡單圖形(知識目標)
2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標)
3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經(jīng)驗,培養(yǎng)學生的興趣、愛好,感受圖形世界的豐富多彩。(情感態(tài)度目標)
教學難點:了解“兩點確定一條直線”等事實,并應用它解決一些實際問題
教 具: 多媒體、棉線、三角板
教學過程:
情景創(chuàng)設:觀察電腦展示圖,使學生感受圖形世界的豐富多彩,激發(fā)學習興趣。
如何來描述我們所看到的現(xiàn)象?
教學過程:
1、 一段拉直的棉線可近似地看作線段
師生畫線段
演示投影片1:①將線段向一個方向無限延長,就形成了______
學生畫射線
、趯⒕段向兩個方向無限延長就形成了_______
學生畫直線
2、 討論小組交流:
、 生活中,還有哪些物體可以近似地看作線段、射線、直線?
。◤娬{(diào)近似兩個字,注意引導學生線段、射線、直線是從生活上抽象出來的)
、诰段、射線、直線,有哪些不同之處, 有哪些相同之處?
。ü膭顚W生用自己的語言描述它們各自的特點)
3、 問題1:圖中有幾條線段?哪幾條?
“要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。
點的記法: 用一個大寫英文字母
線段的記法:①用兩個端點的字母來表示
、谟靡粋小寫英文字母表示
自己想辦法表示射線,讓學生充分討論,并比較如何表示合理
射線的記法:
用端點及射線上一點來表示,注意端點的字母寫在前面
直線的記法:
、 用直線上兩個點來表示
、 用一個小寫字母來表示
強調(diào)大寫字母與小寫字母來表示它們時的區(qū)別
。ㄎ覀冎浪麄兪菬o限延長的,我們?yōu)榱朔奖阊芯考s定成俗的用上面的方法來表示它們。)
練習1:讀句畫圖(如圖示)
。1) 連BC、AD
。2) 畫射線AD
。3) 畫直線AB、CD相交于E
。4) 延長線段BC,反向延長線段DA相交與F
。5) 連結AC、BD相交于O
練習2:右圖中,有哪幾條線段、射線、直線
4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?
學生通過畫圖,得出結論:過一點可以畫無數(shù)條直線
經(jīng)過兩點有且只有一條直線
問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?
為什么?(學生通過操作,回答)
小組討論交流:
你還能舉出一個能反映“經(jīng)過兩點有且只有一條直線”的'實例嗎?
適當引導:栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經(jīng)常在兩個墻角分別立一根標志桿,在兩根標志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。
5、 小結:
、 學生回憶今天這節(jié)課學過的內(nèi)容
進一步清晰線段、射線、直線的概念
、 強調(diào)線段、射線、直線表示方法的掌握
6、 作業(yè):①閱讀“讀一讀” P121
、诹曨}4的1、2、3。4作為思考題
初中數(shù)學教案5
一、教學案例的特點
1、案例與論文的區(qū)別
從文體和表述方式上看,論文是以說理為目的,以議論為主;案例則以記錄為目的,以記敘為主,兼有議論和說明。也就是說,案例是講一個故事,是通過故事說明道理。
從寫作的思路和思維方式來看,論文寫作一般是一種演繹思維,思維的方式是從抽象到具體;案例寫作是一種歸納思維,思維的方式是從具體到抽象。
2、案例與教案、教學設計的區(qū)別
教案和教學設計都是事先設想的教學思路,是對準備實施的教學措施的簡要說明;教學案例則是對已經(jīng)發(fā)生的教學過程的反映。一個寫在教之前,一個寫在教之后;一個是預期達到什么目標,一個是結果達到什么水平。教學設計不宜于交流,教學案例適宜于交流。
3、案例與教學實錄的區(qū)別
案例與教學實錄的體例比較接近,它們都是對教學情景的描述,但教學實錄是有聞必錄,而案例則是有所選擇的,教學案例是根據(jù)目的和功能選擇內(nèi)容,并且必須有作者的反思(價值判斷或理性思考)。
4、教學案例的特點是
——真實性:案例必須是在課堂教學中真實發(fā)生的事件;
——典型性:必須是包括特殊情境和典型案例問題的故事;
——濃縮性:必須多角度地呈現(xiàn)問題,提供足夠的信息;
——啟發(fā)性:必須是經(jīng)過研究,能夠引起討論,提供分析和反思。
二、數(shù)學案例的結構要素
從文章結構上看,數(shù)學案例一般包含以下幾個基本的元素。
(1)背景。案例需要向讀者交代故事發(fā)生的有關情況:時間、地點、人物、事情的起因等。如介紹一堂課,就有必要說明這堂課是在什么背景情況下上的,是一所重點學校還是普通學校,是一個重點班級還是普通班級,是有經(jīng)驗的優(yōu)秀教師還是年青的新教師執(zhí)教,是經(jīng)過準備的“公開課”還是平時的“家常課”,等等。背景介紹并不需要面面俱到,重要的是說明故事的發(fā)生是否有什么特別的原因或條件。
(2)主題。案例要有一個主題:寫案例首先要考慮我這個案例想反映什么問題,例如是想說明怎樣轉變學困生,還是強調(diào)怎樣啟發(fā)思維,或者是介紹如何組織小組討論,或是觀察學生的獨立學習情況,等等;蛘呤且粋什么樣的數(shù)學任務解決過程和方法,在課程標準中數(shù)學任務認知水平的要求怎么樣,在課堂教學中數(shù)學任務認知水平的發(fā)展怎么樣等等。動筆前都要有一個比較明確的想法。比如學校開展研究性學習活動,不同的研究課題、研究小組、研究階段,會面臨不同的問題、情境、經(jīng)歷,都有自己的獨特性。寫作時應該從最有收獲、最有啟發(fā)的角度切入,選擇并確立主題。
(3)情節(jié)。有了主題,寫作時就不會有聞必錄,而要是對原始材料進行篩選。首先需要教師對課堂教學中師生雙方(外顯的和內(nèi)隱的)活動的清晰感知,然后是有針對性地向讀者交代特定的內(nèi)容,把關鍵性的細節(jié)寫清楚。比如介紹教師如何指導學生掌握學習數(shù)學的方法,就要把學生怎么從“不會”到“會”的轉折過程,要把學習發(fā)生發(fā)展過程的細節(jié)寫清楚,要把教師觀察到的學生學習行為,學習行為反映的學生思想、情感、態(tài)度寫清楚,或者把小組合作學習的突出情況寫清楚,或者把個別學生獨立學習的典型行為寫清楚。不能把“任務”布置了一番,把“方法”介紹了一番,說到“任務”的完成過程,說到“掌握”的程度就一筆帶過了。
(4)結果。一般來說,教案和教學設計只有設想的措施而沒有實施的結果,教學實錄通常也只記錄教學的過程而不介紹教學的效果;而案例則不僅要說明教學的思路、描述教學的過程,還要交代學生學習的結果,即這種教學措施的即時效果,包括學生的反映和教師的感受等。讀者知道了結果,將有助于加深對整個過程的內(nèi)涵的了解。
(5)反思。對于案例所反映的主題和內(nèi)容,包括教育教學指導思想、過程、結果,對其利弊得失,作者要有一定的`看法和分析。反思是在記敘基礎上的議論,可以進一步揭示事件的意義和價值。比如同樣是一個學困生轉化的事例,我們可以從社會學、教育學、心理學、學習理論等不同的理論角度切入,揭示成功的原因和科學的規(guī)律。反思不一定是理論闡述,也可以是就事論事、有感而發(fā),引起人的共鳴,給人以啟發(fā)。
三、初中數(shù)學教學案例主題的選擇
新課程理念下的初中數(shù)學教學案例,可從以下六方面選擇主題:
(1)體現(xiàn)讓學生動手實踐、自主探究、合作交流的教學方式;
(2)體現(xiàn)教師幫助學生在自主探究、合作交流的過程中真正理解和掌握基本的數(shù)學知識和技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經(jīng)驗;
(3)體現(xiàn)讓學生親身經(jīng)歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,采用“問題情境——建立模型——解釋、應用與拓展”的模式教學的成功經(jīng)驗;
(4)體現(xiàn)數(shù)學與信息技術整合的教學方法;
(5)體現(xiàn)教師在教學過程中的組織者、引導者與合作者的作用;
(6)體現(xiàn)教學中對學生情感、態(tài)度的關注和評價,以及怎樣幫助不同的人在數(shù)學上獲得不同的發(fā)展,等等。
初中數(shù)學教案6
教學建議
知識結構
重難點分析
本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學習的正方形的基礎。
本節(jié)的難點是性質(zhì)的靈活應用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:
1.的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質(zhì)和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質(zhì)的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5.由于和的性質(zhì)定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在性質(zhì)應用講解中,為便于理解掌握,教師要注意題目的層次安排。
一、教學目標
1.掌握概念,知道與平行四邊形的關系.
2.掌握的性質(zhì).
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學生的學習興趣.
5.根據(jù)平行四邊形與矩形、的從屬關系,通過畫圖向學生滲透集合思想.
6.通過性質(zhì)的學習,體會的圖形美.
二、教法設計
觀察分析討論相結合的方法
三、重點·難點·疑點及解決辦法
1.教學重點:的性質(zhì)定理.
2.教學難點:把的性質(zhì)和直角三角形的知識綜合應用.
3.疑點:與矩形的性質(zhì)的.區(qū)別.
四、課時安排
1課時
五、教具學具準備
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設計
教師演示教具、創(chuàng)設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥
七、教學步驟
【復習提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應突出兩條:
(1)強調(diào)是平行四邊形.
。2)一組鄰邊相等.
2.的性質(zhì):
教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學們根據(jù)的定義結合圖形猜一下有什么性質(zhì)(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導學生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關系?
生:全等.
師:它們的底和高和兩條對角線有什么關系?
生:分別是兩條對角線的一半.
師:如果設的兩條對角線分別為、,則的面積是什么?
生:
教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑W生用定義來判定.)
例3已知的邊長為,,對角線,相交于點,如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
。2)還可以引導學生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結、擴展】
1.小結:(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關系:
。2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
、谔赜行再|(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
八、布置作業(yè)
教材P158中6、7、8,P196中10
九、板書設計
標題
定義……
性質(zhì)例2…… 小結:
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
十、隨堂練習
教材P151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
初中數(shù)學教案7
一、教材分析
本節(jié)內(nèi)容是人民教育出版社出版《義務教育課程實驗教科書(五四學制)數(shù)學》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。
二、設計思想
本節(jié)內(nèi)容是學生掌握了“整式”有關概念的延展學習,為后繼學習整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎,是“數(shù)”向“式”的正式過度,具有十分重要地位。
八年級學生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結合教材,立足讓每個學生都有發(fā)展的宗旨,我采用合作探究的學習方式開展教學活動,通過設計有針對性、多樣式的問題引導學生,給學生提供充足的、和諧的探索空間讓學生學習。通過學習活動不但培養(yǎng)學生化簡意識,提升數(shù)學運算技能而且讓學生深刻體會到數(shù)學是解決實際問題的重要工具,增強應用數(shù)學的'意識。
三、教學目標:
。ㄒ唬┲R技能目標:
1、理解同類項的含義,并能辨別同類項。
2、掌握合并同類項的方法,熟練的合并同類項。
3、掌握整式加減運算的方法,熟練進行運算。
。ǘ┻^程方法目標:
1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學生觀察、歸納、探究的能力。
2、通過合并同類項、整式加減運算的練習活動,提高學生運算技能,提升運算的準確率培養(yǎng)學生化簡意識,發(fā)展學生的抽象概括能力。
3、通過研究引例、探究例1的活動,發(fā)展學生的形象思維,初步培養(yǎng)學生的符號感。
。ㄈ┣楦袃r值目標:
1、通過交流協(xié)商、分組探究,培養(yǎng)學生合作交流的意識和敢于探索未知問題的精神。
2、通過學習活動培養(yǎng)學生科學、嚴謹?shù)膶W習態(tài)度。
四、教學重、難點:
合并同類項
五、教學關鍵:
同類項的概念
六、教學準備:
教師:
1、篩選數(shù)學題目,精心設置問題情境。
2、制作大小不等的兩個長方體紙盒實物模型,并能展開。
3、設計多媒體教學課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)
學生:
1、復習有關單項式的概念、有理數(shù)四則運算及去括號的法則)
2、每小組制作大小不等的兩個長方體紙盒模型。
初中數(shù)學教案8
一、指導思想
教育教學工作是一個頭緒眾多的系統(tǒng)工程,在紛繁的頭緒中需要各項工作有序進展,尤為重要的是強化常規(guī),做好細節(jié),教學常規(guī)是對學校教學工作的基本要求,落實教學常規(guī)是學校教學工作得以正常有序開展的根本保證。只有搞好教學常規(guī)才有可能獲得成功的教育。教師教學水平的高低體現(xiàn)于教學各個步驟的細節(jié)中,空洞地談教學能力是蒼白的`,只有用教師的備課情況、講課細節(jié)、作業(yè)批改情況。教學常規(guī)培養(yǎng)著教師的基本功,決定著教師的教學能力,可以說教師的教學水平就是在這些常規(guī)細節(jié)中培養(yǎng)起來。
二、檢查反饋
本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面,F(xiàn)將檢查情況總結如下教案方面的特點與不足。
特點:
1、絕大多數(shù)教案設計完整,教學重點、難點突出,設置得當,緊緊圍繞新課標,例如:劉興華、孫菊、江文等能突出對學科素養(yǎng)的高度關注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側重對自己教法和學生學法的指導,并且還能對自己不得法的教學手段、方式、方法進行深刻地解剖,能很好地體現(xiàn)課堂教學的反思意識,反思深刻、務實、有針對性。
2、教學環(huán)節(jié)齊全,注重引語與小結,使教學設計前后呼應,環(huán)節(jié)完整。
3、注重選擇恰當?shù)慕虒W方法,注重在靈活多樣的教學方法中培養(yǎng)學生的合作意識和創(chuàng)新精神。
4、教案能體現(xiàn)多媒體教學手段,注重培養(yǎng)學生的探究精神和創(chuàng)新能力。
不足:
1、教案后的教學反思不夠認真、不夠詳細,沒能對本堂課的得與失作出記錄與小結,從中也可以看出我們對課后反思還不夠重視。
2、個別教師教案過于簡單。
作業(yè)方面的特點與不足
特點:
1、能按進度布置作業(yè),作業(yè)設置量度適中,難易適中,上交率較高,且都能做到全批全改。
2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴格、細致,能夠反映學生作業(yè)中的錯誤做法及糾正措施。
不足:
1、對于學生書寫的工整性,還需加強教育。
2、教師在批閱作業(yè)時,要稍細心些,發(fā)現(xiàn)問題就讓學生當時改正,學生也就會逐漸養(yǎng)成做事認真的習慣。
初中數(shù)學教案9
教學目標:
利用數(shù)形結合的數(shù)學思想分析問題解決問題。
利用已有二次函數(shù)的知識經(jīng)驗,自主進行探究和合作學習,解決情境中的數(shù)學問題,初步形成數(shù)學建模能力,解決一些簡單的實際問題。
在探索中體驗數(shù)學來源于生活并運用于生活,感悟二次函數(shù)中數(shù)形結合的美,激發(fā)學生學習數(shù)學的興趣,通過合作學習獲得成功,樹立自信心。
教學重點和難點:
運用數(shù)形結合的思想方法進行解二次函數(shù),這是重點也是難點。
教學過程:
(一)引入:
分組復習舊知。
探索:從二次函數(shù)y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?
可引導學生從幾個方面進行討論:
(1)如何畫圖
。2)頂點、圖象與坐標軸的交點
。3)所形成的三角形以及四邊形的面積
。4)對稱軸
從上面的問題導入今天的課題二次函數(shù)中的圖象與性質(zhì)。
(二)新授:
1、再探索:二次函數(shù)y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數(shù)量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。
再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。
再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。
2、讓同學討論:從已知條件如何求二次函數(shù)的解析式。
例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。
(三)提高練習
根據(jù)我們學校人人皆知的船模特色項目設計了這樣一個情境:
讓班級中的上科院小院士來簡要介紹學校船模組的`情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。
讓學生在練習中體會二次函數(shù)的圖象與性質(zhì)在解題中的作用。
。ㄋ模┳寣W生討論小結(略)
(五)作業(yè)布置
1、在直角坐標平面內(nèi),點O為坐標原點,二次函數(shù)y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。
。1)求二次函數(shù)的解析式;
(2)將上述二次函數(shù)圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。
2、如圖,一個二次函數(shù)的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數(shù)圖象上,且CBAB,CB=AB,求這個二次函數(shù)的解析式。
3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內(nèi)橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數(shù)軸的單位長度,建立平面直角坐標系,如圖2。
。1)求出圖2上以這一部分拋物線為圖象的函數(shù)解析式,寫出函數(shù)定義域;
(2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內(nèi)實際橋長(備用數(shù)據(jù): ,計算結果精確到1米)
初中數(shù)學教案10
教學目標
1.知識與技能
能運用運算律探究去括號法則,并且利用去括號法則將整式化簡.
2.過程與方法
經(jīng)歷類比帶有括號的有理數(shù)的運算,發(fā)現(xiàn)去括號時的符號變化的規(guī)律,歸納出去括號法則,培養(yǎng)學生觀察、分析、歸納能力.
3.情感態(tài)度與價值觀
培養(yǎng)學生主動探究、合作交流的意識,嚴謹治學的學習態(tài)度.
重、難點與關鍵
1.重點:去括號法則,準確應用法則將整式化簡.
2.難點:括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.
3.關鍵:準確理解去括號法則.
教具準備
投影儀.
教學過程
一、新授
利用合并同類項可以把一個多項式化簡,在實際問題中,往往列出的式子含有括號,那么該怎樣化簡呢?
現(xiàn)在我們來看本章引言中的問題(3):
在格爾木到拉薩路段,如果列車通過凍土地段要t小時,那么它通過非凍土地段的時間為(t-0.5)小時,于是,凍土地段的.路程為100t千米,非凍土地段的路程為120(t-0.5)千米,因此,這段鐵路全長為
100t+120(t-0.5)千米①
凍土地段與非凍土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都帶有括號,它們應如何化簡?
思路點撥:教師引導,啟發(fā)學生類比數(shù)的運算,利用分配律.學生練習、交流后,教師歸納:
利用分配律,可以去括號,合并同類項,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我們知道,化簡帶有括號的整式,首先應先去括號.
上面兩式去括號部分變形分別為:
+120(t-0.5)=+120t-60③
-120(t-0.5)=-120+60④
比較③、④兩式,你能發(fā)現(xiàn)去括號時符號變化的規(guī)律嗎?
思路點撥:鼓勵學生通過觀察,試用自己的語言敘述去括號法則,然后教師板書(或用屏幕)展示:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
如果括號外的因數(shù)是負數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反.
特別地,+(x-3)與-(x-3)可以分別看作1與-1分別乘(x-3).
利用分配律,可以將式子中的括號去掉,得:
+(x-3)=x-3(括號沒了,括號內(nèi)的每一項都沒有變號)
-(x-3)=-x+3(括號沒了,括號內(nèi)的每一項都改變了符號)
去括號規(guī)律要準確理解,去括號應對括號的每一項的符號都予考慮,做到要變都變;要不變,則誰也不變;另外,括號內(nèi)原有幾項去掉括號后仍有幾項.
二、范例學習
例1.化簡下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
思路點撥:講解時,先讓學生判定是哪種類型的去括號,去括號后,要不要變號,括號內(nèi)的每一項原來是什么符號?去括號時,要同時去掉括號前的符號.為了防止錯誤,題(2)中-3(a2-2b),先把3乘到括號內(nèi),然后再去括號.
解答過程按課本,可由學生口述,教師板書.
例2.兩船從同一港口同時出發(fā)反向而行,甲船順水,乙船逆水,兩船在靜水中的速度都是50千米/時,水流速度是a千米/時.
(1)2小時后兩船相距多遠?
(2)2小時后甲船比乙船多航行多少千米?
教師操作投影儀,展示例2,學生思考、小組交流,尋求解答思路.
思路點撥:根據(jù)船順水航行的速度=船在靜水中的速度+水流速度,船逆水航行速度=船在靜水中行駛速度-水流速度.因此,甲船速度為(50+a)千米/時,乙船速度為(50-a)千米/時,2小時后,甲船行程為2(50+a)千米,乙船行程為(50-a)千米.兩船從同一洪口同時出發(fā)反向而行,所以兩船相距等于甲、乙兩船行程之和.
解答過程按課本.
去括號時強調(diào):括號內(nèi)每一項都要乘以2,括號前是負因數(shù)時,去掉括號后,括號內(nèi)每一項都要變號.為了防止出錯,可以先用分配律將數(shù)字2與括號內(nèi)的各項相乘,然后再去括號,熟練后,再省去這一步,直接去括號.
三、鞏固練習
1.課本第68頁練習1、2題.
2.計算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.[5xy2]
思路點撥:一般地,先去小括號,再去中括號.
四、課堂小結
去括號是代數(shù)式變形中的一種常用方法,去括號時,特別是括號前面是“-”號時,括號連同括號前面的“-”號去掉,括號里的各項都改變符號.去括號規(guī)律可以簡單記為“-”變“+”不變,要變?nèi)甲?當括號前帶有數(shù)字因數(shù)時,這個數(shù)字要乘以括號內(nèi)的每一項,切勿漏乘某些項.
五、作業(yè)布置
1.課本第71頁習題2.2第2、3、5、8題.
2.選用課時作業(yè)設計.
初中數(shù)學教案11
一、教學任務分析
1、教學目標定位
根據(jù)《數(shù)學課程標準》和素質(zhì)教育的要求,結合學生的認知規(guī)律及心理特征而確定,即:七年級的學生對身邊有趣事物充滿好奇心,對一些有規(guī)律的問題有探求的欲望,有很強的表現(xiàn)欲,同時又具備了一定的歸納、總結表達的能力。因此,確定如下教學目標:
。1).知識技能目標
讓學生掌握多邊形的內(nèi)角和的公式并熟練應用。
(2).過程和方法目標
讓學生經(jīng)歷知識的形成過程,認識數(shù)學特征,獲得數(shù)學經(jīng)驗,進一步發(fā)展學生的說理意識和簡單推理,合情推理能力。
(3).情感目標
激勵學生的學習熱情,調(diào)動他們的學習積極性,使他們有自信心,激發(fā)學生樂于合作交流意識和獨立思考的習慣。。
2、教學重、難點定位
教學重點是多邊形的內(nèi)角和的得出和應用。
教學難點是探索和歸納多邊形內(nèi)角和的過程。
二、教學內(nèi)容分析
1、教材的地位與作用
本課選自人教版數(shù)學七年級下冊第七章第三節(jié)《多邊形的內(nèi)角和》的第一課時。本節(jié)課作為第七章第三節(jié),起著承上啟下的作用。在內(nèi)容上,從三角形的內(nèi)角和到多邊形的`內(nèi)角和,層層遞進,這樣編排易于激發(fā)學生的學習興趣,很適合學生的認知特點。
2、聯(lián)系及應用
本節(jié)課是以三角形的知識為基礎,仿照三角形建立多邊形的有關概念。因此
多邊形的邊、內(nèi)角、內(nèi)角和等等都可以同三角形類比。通過這節(jié)課的學習,可以培養(yǎng)學生探索與歸納能力,體會把復雜化為簡單,化未知為已知,從特殊到一般和轉化等重要的思想方法。而多邊形在工程技術和實用圖案等方面有許多的實際應用,下一節(jié)平面鑲嵌就要用到,讓學生接觸一些多邊形的實例,可以加深對它的概念以及性質(zhì)的理解。
三、教學診斷分析
學生對三角形的知識都已經(jīng)掌握。讓學生由三角形的內(nèi)角和等于180°,是一個定值,猜想四邊形的內(nèi)角和也是一個定值,這是學生很容易理解的地方。由幾個特殊的四邊形的內(nèi)角和出發(fā),譬如長方形、正方形的內(nèi)角和都等于360°,可知如果四邊形的內(nèi)角和是一個定值,這個定值是360°。要得到四邊形的內(nèi)角和等于360°這個結論最直接的方法就是用量角器來度量。讓學生動手探索實踐,在探索過程中發(fā)現(xiàn)問題"度量會有誤差"。發(fā)現(xiàn)問題后接著引導學生聯(lián)想對角線的作用,四邊形的一條對角線,把它分成了兩個三角形,應用三角形的內(nèi)角和等于180°,就得到四邊形的內(nèi)角和等于360°。讓學生從特殊四邊形的內(nèi)角和聯(lián)想一般四邊形的內(nèi)角和,并在思想上引導,學習將新問題化歸為已有結論的思想方法,這里學生都容易理解。課堂教學設計中,在探究五邊形,六邊形和七邊形的內(nèi)角和時,讓學生動手實踐,設置探究活動二,為了讓學生拓寬思路,從不同的角度去思考這個問題,這個活動對學生的動手能力要求進一步提高了,學生對這個問題的理解稍微有些難度,但學生可根據(jù)自己本身的特點來加以補充和完善。在教學設計中,要求根據(jù)小組選擇的方法探索多邊形的內(nèi)角和。首先,小組內(nèi)各個成員對所選擇的方法要了解,能夠把掌握的知識運用到實踐中;再者,小組內(nèi)各個成員需要分工協(xié)作,才能夠順利的把任務完成;最后,學生還需要把自己的思維從感性認識提升到理性認識的高度,這樣就培養(yǎng)了學生合情推理的意識。
四、教法特點及預期效果分析本節(jié)課借鑒了美國教育家杜威的"在做中學"的理論和葉圣陶先生所倡導的"解放學生的手,解放學生的大腦,解放學生的時間"的思想,我確定如下教法和學法:
1、教學方法的設計
我采用了探究式教學方法,整個探究學習的過程充滿了師生之間,學生之間的交流和互動,體現(xiàn)了教師是教學活動的組織者、引導者、合作者,學生才是學習的主體。
2、活動的開展
利用學生的好奇心設疑、解疑,組織活潑互動、有效的教學活動,鼓勵學生積極參與,大膽猜想,使學生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
3、現(xiàn)代教育技術的應用
我利用課件輔助教學,適時呈現(xiàn)問題情景,以豐富學生的感性認識,增強直觀效果,提高課堂效率。探究活動在本次教學設計中占了非常大的比例,探究活動一設置目的讓學生動手實踐,并把新知識與學過的三角形的相關知識聯(lián)系起來;探究活動二設置目的讓學生拓寬思路,為放開書本的束縛打下基礎;培養(yǎng)學生動手操作的能力和合情推理的意識。通過師生共同活動,訓練學生的發(fā)散性思維,培養(yǎng)學生的創(chuàng)新精神;使學生懂得數(shù)學內(nèi)容普遍存在相互聯(lián)系,相互轉化的特點。練習活動的設計,目的一檢查學生的掌握知識的情況,并促進學生積極思考;目的二凸現(xiàn)小組合作的特點,并促進學生情感交流。
以上是我對《多邊形的內(nèi)角和》的教學設計說明。
初中數(shù)學教案12
[教學目標]
1、體會并了解反比例函數(shù)的圖象的意義
2、能列表、描點、連線法畫出反比例函數(shù)的圖象
3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)
[教學重點和難點]
本節(jié)教學的重點是反比例函數(shù)的圖象及圖象的性質(zhì)
由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復雜性是本節(jié)教學的難點
[教學過程]
1、情境創(chuàng)設
可以從復習一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進一步認識函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉而導人關注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會是什么樣子呢?
2、探索活動
探索活動1反比例函數(shù)y?
由于反比例函數(shù)y?
要分幾個層次來探求:
(1)可以先估計——例如:位置(圖象所在象限、圖象與坐標軸的交點等)、趨勢(上升、下降等);
(2)方法與步驟——利用描點作圖;
列表:取自變量x的哪些值?——x是不為零的任何實數(shù),所以不能取x的值的`為零,但仍可以以零為基準,左右均勻,對稱地取值。
描點:依據(jù)什么(數(shù)據(jù)、方法)找點?
連線:怎樣連線?——可在各個象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。
探索活動2反比例函數(shù)y??2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學生第一次接觸有一定的難度,因此需x2的圖象.x
可以引導學生采用多種方式進行自主探索活動:
2的圖象的方式與步驟進行自主探索其圖象;x
222(2)可以通過探索函數(shù)y?與y??之間的關系,畫出y??的圖象.xxx
22探索活動3反比例函數(shù)y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數(shù)y?
引導學生從通過與一次函數(shù)的圖象的對比感受反比例函數(shù)圖象“曲線”及“兩支”的特征.(即雙曲線)反比例函數(shù)y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當k?0時,圖象在第一、第x
初中數(shù)學教案13
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
、,在實踐操作過程中,逐步探索圖形之間的平移關系;
、冢瑢M合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的`平移,復制所求的圖形;
3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續(xù)變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學設計:
創(chuàng)設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當?shù)闹笇,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。
初中數(shù)學教案14
教學目標
1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉化,會進行加減混合運算;
2. 通過學習一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學的轉化思想;
3.通過加法運算練習,培養(yǎng)學生的運算能力。
教學建議
。ㄒ唬┲攸c、難點分析
本節(jié)課的重點是依據(jù)運算法則和運算律準確迅速地進行有理數(shù)的加減混合運算,難點是省略加號與括號的代數(shù)和的計算.
由于減法運算可以轉化為加法運算,所以加減混合運算實際上就是有理數(shù)的加法運算。了解運算符號和性質(zhì)符號之間的關系,把任何一個含有有理數(shù)加、減混合運算的算式都看成和式,這是因為有理數(shù)加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.
(二)知識結構
。ㄈ┙谭ńㄗh
1.通過習題,復習、鞏固有理數(shù)的加、減運算以及加減混合運算的法則與技能,講課前教師要認真總結、分析學生在進行有理數(shù)加、減混合運算時常犯的錯誤,以便在這節(jié)課分析習題時,有意識地幫助學生改正.
2.關于“去括號法則”,只要學生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。這時,稱這個和式為代數(shù)和。再例如
-3-4表示-3、-4兩數(shù)的代數(shù)和,
-4+3表示-4、+3兩數(shù)的代數(shù)和,
3+4表示3和+4的代數(shù)和
等。代數(shù)和概念是掌握有理數(shù)運算的一個重要概念,請老師務必給予充分注意。
4.先把正數(shù)與負數(shù)分別相加,可以使運算簡便。
5.在交換加數(shù)的位置時,要連同前面的符號一起交換。如
12-5+7 應變成 12+7-5,而不能變成12-7+5。
教學設計示例一
有理數(shù)的加減混合運算(一)
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
1.了解:代數(shù)和的概念.
2.理解:有理數(shù)加減法可以互相轉化.
3.應用:會進行加減混合運算.
(二)能力訓練點
培養(yǎng)學生的口頭表達能力及計算的準確能力.
。ㄈ┑掠凉B透點
通過學習一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學的轉化思想.
(四)美育滲透點
學習了本節(jié)課就知道一切加減法運算都可以統(tǒng)一成加法運算.體現(xiàn)了數(shù)學的統(tǒng)一美.
二、學法引導
1.教學方法:采用嘗試指導法,體現(xiàn)學生主體地位,每一環(huán)節(jié),設置一定題目進行鞏固練
習,步步為營,分散難點,解決關鍵問題.
2.學生寫法:練習→尋找簡單的一般性的'方法→練習鞏固.
三、重點、難點、疑點及解決辦法
1.重點:把加減混合運算算式理解為加法算式.
2.難點:把省略括號和的形式直接按有理數(shù)加法進行計算.
四、課時安排
1課時
五、教具學具準備
投影儀或電腦、自制膠片.
六、師生互動活動設計
教師提出問題學生練習討論,總結歸納加減混合運算的一般步驟,教師出示練習題,學生練習反饋.
七、教學步驟
。ㄒ唬﹦(chuàng)設情境,復習引入
師:前面我們學習了有理數(shù)的加法和減法,同學們學得都很好!請同學們看以下題目: -9+(+6);(-11)-7.
師:(1)讀出這兩個算式.
。2)“+、-”讀作什么?是哪種符號?
“+、-”又讀作什么?是什么符號?
學生活動:口答教師提出的問題.
師繼續(xù)提問:(1)這兩個題目運算結果是多少?
。2)(-11)-7這題你根據(jù)什么運算法則計算的?
學生活動:口答以上兩題(教師訂正).
師小結:減法往往通過轉化成加法后來運算.
【教法說明】為了進行有理數(shù)的加減混合運算,必須先對有理數(shù)加法,特別是有理數(shù)減法的題目進行復習,為進一步學習加減混合運算奠定基礎.這里特別指出“+、-”有時表示性質(zhì)符號,有時是運算符號,為在混合運算時省略加號、括號時做必要的準備工作.
師:把兩個算式-9+(+6)與(-11)-7之間加上減號就成了一個題目,這個題目中既有加法又有減法,就是我們今天學習的有理數(shù)的加減混合運算.(板書課題2.7有理數(shù)的加減混合運算(1))
教學說明:由復習的題目巧妙地填“-”號,就變成了今天將學的加減混合運算內(nèi)容,使學生更形象、更深刻地明白了有理數(shù)加減混合運算題目組成.
。ǘ┨剿餍轮v授新課
1.講評(-9)+(-6)-(-11)-7.
。1)省略括號和的形式
師:看到這個題你想怎樣做?
學生活動:自己在練習本上計算.
教師針對學生所做的方法區(qū)別優(yōu)劣.
【教法說明】題目出示后,教師不急于自己講評,而是讓學生嘗試,給了學生一個展示自己的機會,這時,有的學生可能是按從左到右的順序運算,有的同學可能是先把減法都轉化成了加法,然后按加法的計算法則再計算??這樣在不同的方法中,學生自己就會尋找到簡單的、一般性的方法.
師:我們對此類題目經(jīng)常采用先把減法轉化為加法,這時就成了-9,+6,+11,-7的和,加號通?梢允÷,括號也可以省略,即:
原式=(-9)+(+6)+(+11)+(-7)
=-9+6+11-7.
提出問題:雖然加號、括號省略了,但-9+6+11-7仍表示-9,+6,+11,-7的和,所以這個算式可以讀成??
學生活動:先自己練習嘗試用兩種讀法讀,口答(教師糾正).
【教法說明】教師根據(jù)學生所做的方法,及時指出最具代表性的方法來給學生指明方向,在把算式寫成省略括號代數(shù)和的形式后,通過讓學生練習兩種讀法,可以加深對此算式的理解,以此來訓練學生的觀察能力及口頭表達能力.
鞏固練習:(出示投影1)
1.把下列算式寫成省略括號和的形式,并把結果用兩種讀法讀出來.
。1)(+9)-(+10)+(-2)-(-8)+3;
。2)+()-()-().
2.判斷
式子-7+1-5-9的正確讀法是().
A.負7、正1、負5、負9;
B.減7、加1、減5、減9;
C.負7、加1、負5、減9;
D.負7、加1、減5、減9;
學生活動:1題兩個學生板演,兩個學生用兩種讀法讀出結果,其他同學自行演練,然后同桌讀出互相糾正,2題搶答.
【教法說明】這兩題旨意在鞏固怎樣把加減混合運算題目都轉化成加法運算寫成代數(shù)和的形式,這里特別注意了代數(shù)和形式的兩種讀法.
2.用加法運算律計算出結果
師:既然算式能看成幾個數(shù)的和,我們可以運用加法的運算律進行計算,通常同號兩數(shù)放在一起分別相加.
-9+6+11-7
。剑9-7+6+11.
學生活動:按教師要求口答并讀出結果.
鞏固練習:(出示投影2)
填空:
1.-4+7-4=-______________-_______________+_______________
2.+6+9-15+3=_____________+_____________+_____________-_____________
3.-9-3+2-4=____________9____________3____________4____________2
4.____________________________________
學生活動:討論后回答.
【教法說明】學生運用加法交換律時,很可能產(chǎn)生“-9+7+11-6”這樣的錯誤,教師先讓學生自己去做,然后糾正,又做一組鞏固練習,使學生牢固掌握運用加法運算律把同號數(shù)放在一起時,一定要連同前面的符號一起交換這一知識點.
師:-9-7+6+11怎樣計算?
學生活動:口答
。郯鍟
。9-7+6+11
=-16+17
。1
鞏固練習:(出示投影3)
1.計算(1)-1+2-3-4+5;
。2).
2.做完前面兩個題目計算:(1)(+9)-(+10)+(-2)-(-8)+3;
。2).
學生活動:四個同學板演,其他同學在練習本上做.
【教法說明】針對一道例題分成三部分,每一部分都有一組相應的鞏固練習,這樣每一步學生都掌握得較牢固,這時教師一定要總結有理數(shù)加減混合運算的方法,使分散的知識有相對的集中.
師小結:有理數(shù)加減法混合運算的題目的步驟為:
1.減法轉化成加法;
2.省略加號括號;
3.運用加法交換律使同號兩數(shù)分別相加;
4.按有理數(shù)加法法則計算.
。ㄈ┓答伨毩
。ǔ鍪就队4)
計算:(1)12-(-18)+(-7)-15;
(2).
學生活動:可采用同桌互相測驗的方法,以達到糾正錯誤的目的.
【教法說明】這兩個題目是本節(jié)課的重點.采用測驗的方式來達到及時反饋.
。ㄋ模w納小結
師:1.怎樣做加減混合運算題目?
2.省略括號和的形式的兩種讀法?
學生活動:口答.
【教法說明】小結不是教師單純的總結,而是讓學生參與回答,在學生思考回答的過程中將本節(jié)的重點知識納入知識系統(tǒng).
八、隨堂練習
1.把下列各式寫成省略括號的和的形式
。1)(-5)+(+7)-(-3)-(+1);
。2)10+(-8)-(+18)-(-5)+(+6).
2.說出式子-3+5-6+1的兩種讀法.
3.計算
(1)0-10-(-8)+(-2);
(2)-4.5+1.8-6.5+3-4;
(3).
九、布置作業(yè)
(一)必做題:1.計算:(1)-8+12-16-23;
。2);
。3)-40-28-(-19)+(-24)-(-32);
。4)-2.7+(-3.2)-(1.8)-2.2;
。ǘ┻x做題:(1)當時,,,哪個最大,哪個最小?
(2)當時,,,哪個最大,哪個最小?
十、板書設計
初中數(shù)學教案15
一、課題
27.3 過三點的圓
二、教學目標
1.經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.
2.. 知道過不在同一條直線上的三個點畫圓的方法
3.了解三角形的外接圓和外心.
三、教學重點和難點
重點:經(jīng)歷過一點、兩點和不在同一直線上的三點作圓的過程.
難點:知道過不在同一條直線上的三個點畫圓的方法.
四、教學手段
現(xiàn)代課堂教學手段
五、教學方法
學生自己探索
六、教學過程設計
(一)、新授
1.過已知一個點A畫圓,并考慮這樣的圓有多少個?
2.過已知兩個點A、B畫圓,并考慮這樣的圓有多少個?
3.過已知三個點A、B、C畫圓,并考慮這樣的圓有多少個?
讓學生以小組為單位,進行探索、思考、交流后,小組選派代表向全班學生展示本小組的探索成果,在展示后,接受其他學生的質(zhì)疑.
得出結論:過一點可以畫無數(shù)個圓;過兩點也可以畫無數(shù)個圓;這些圓的圓心都在連結這兩點的線段的垂直平分線上;經(jīng)過不在同一直線上的三個點可以畫一個圓,并且這樣的圓只有一個.
不在同一直線上的三個點確定一個圓.
給出三角形外接圓的概念:經(jīng)過三角形三個頂點可以作一個圓,這個圓叫作三角形的外接圓,外接圓的圓心叫做三角形的外心.
例:畫已知三角形的外接圓.
讓學生探索課本第15頁習題1.
一起探究
八年級(一)班的學生為老區(qū)的小朋友捐款500元,準備為他們購買甲、乙 兩種圖書共12套.已知甲種圖書每套45元,乙種圖書每套40元.這些錢最多能買甲種圖書多少套?
分析:帶領學生完成課本第13頁的'表格,并完成2、3 問題,使學生清楚通過列表可以更好的分析題目,對于情景較為復雜的問題情景可采用這種分析方法解題.另外通過此題,使學生認識到:在應不等式解決實際問題時,當求出不等式的解集后,還要根據(jù)問題的實際意義確定問題的解.
(二)、小結
七、練習設計
P15習題2、3
八、教學后記
后備練習:
1. 已知一個三角形的三邊長分別是 ,則這個三角形的外接圓面積等于 .
2. 如圖,有A, ,C三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在()
A.在AC,BC兩邊高線的交點處
B.在AC,BC兩邊中線的交點處
C.在AC,BC兩邊垂直平分線的交點處
D.在A,B兩內(nèi)角平分線的交點處
【初中數(shù)學教案】相關文章:
初中數(shù)學教案08-12
角初中數(shù)學教案12-30
人教版初中數(shù)學教案07-17
初中數(shù)學教案模板11-02
初中數(shù)學教案【推薦】11-22
初中數(shù)學教案:矩形01-01
初中趣味數(shù)學教案02-02
初中數(shù)學教案范文02-21
初中數(shù)學教案《圓》03-05