- 相關(guān)推薦
CMAC網(wǎng)絡(luò)在機(jī)器人手眼系統(tǒng)位置控制中的應(yīng)用
摘要:在機(jī)器人手眼系統(tǒng)位置控制中,用CMAC神經(jīng)網(wǎng)絡(luò)建立了機(jī)器人非線性視覺映射關(guān)系模型,實(shí)現(xiàn)了圖像坐標(biāo)到機(jī)器人坐標(biāo)的變換。該模型采用了一種新的多維CMAC網(wǎng)絡(luò)的處理方法——疊加處理法。實(shí)驗(yàn),與BP網(wǎng)絡(luò)相比,CMAC網(wǎng)絡(luò)能以羅高的精度和較快的速度完成手眼系統(tǒng)的坐標(biāo)變換。關(guān)鍵詞:CMAC神經(jīng)網(wǎng)絡(luò) BP網(wǎng)絡(luò) 疊加處理器 機(jī)器人手眼系統(tǒng)
近年來,在智能機(jī)器人領(lǐng)域,關(guān)于機(jī)器人手眼系統(tǒng)位置控制問題的研究受到越來越多的關(guān)注。在研究中發(fā)現(xiàn)存在這樣一個(gè)問題,即如何以較高的精度和較快的速度實(shí)現(xiàn)機(jī)器人手眼系統(tǒng)位置控制,以使機(jī)器人能快速實(shí)現(xiàn)對目標(biāo)物體的準(zhǔn)確定位和自動抓取。這個(gè)問題也就是機(jī)器人手眼系統(tǒng)中非線性視覺映射關(guān)系模型的建模問題。采用精確的數(shù)學(xué)模型是機(jī)器人視覺系統(tǒng)傳統(tǒng)的建模方法。但由于這類問題是高度的非線性問題,參數(shù)多且其間的相關(guān)性強(qiáng),故這種方法理論上雖然精確,但是建模困難、計(jì)算量大,實(shí)時(shí)性差且沒有容錯能力和自學(xué)習(xí)能力,而神經(jīng)網(wǎng)絡(luò)作為一種智能信息處理的新技術(shù),具有極強(qiáng)的非線性映射能力。因此采用神經(jīng)網(wǎng)絡(luò)的建模方法與傳統(tǒng)的方法相比具有極大的優(yōu)越性。
作者已經(jīng)采用BP網(wǎng)絡(luò)建立了機(jī)器人視覺系統(tǒng)的映射模型,并作了初步的研究和實(shí)驗(yàn)。結(jié)果發(fā)現(xiàn),采用神經(jīng)網(wǎng)絡(luò)建立機(jī)器人視覺映射模型是一種有效的建模方法。但采用BP網(wǎng)絡(luò)建立模型存在網(wǎng)絡(luò)規(guī)模大、訓(xùn)練時(shí)間長、容易陷入局部最小解、定位精度較低等缺點(diǎn)。本文采用CMAC神經(jīng)網(wǎng)絡(luò)建立了機(jī)器人視覺系統(tǒng)的映射模型,取得了十分令人滿意的效果。
1 CMAC神經(jīng)網(wǎng)絡(luò)簡介
小腦模型關(guān)節(jié)控制器神經(jīng)網(wǎng)絡(luò)(Cerebellar Model Articulation Controller Neural Network,即CMAC神經(jīng)網(wǎng)絡(luò))是Albus根據(jù)小腦的生物模型提出的一種人工神經(jīng)網(wǎng)絡(luò)。它學(xué)習(xí)速度快,具有局域泛化能力,能夠克服BP網(wǎng)絡(luò)容易陷入局部最小點(diǎn)的問題,且硬件易于實(shí)現(xiàn)。目前,CMAC神經(jīng)網(wǎng)絡(luò)被廣泛應(yīng)用于機(jī)器人控制、非線性函數(shù)映射、模式識別以及自適應(yīng)控制等領(lǐng)域。
1.1 CMAC的基本結(jié)構(gòu)和原理
CMAC神經(jīng)網(wǎng)絡(luò)的模型結(jié)構(gòu)原理圖如圖1所示。它本質(zhì)上可看作是一種用于表示復(fù)雜非線性函數(shù)的查表結(jié)構(gòu)。
圖1中,S為n維輸入矢量空間;A為聯(lián)想記憶空間;Y是輸出響應(yīng)矢量。輸入空間S中的每一矢量S(…,Si,…,Sj,…)被量化后送人存鍺區(qū)A,每個(gè)輸入變量Si激活存儲區(qū)A中C個(gè)連續(xù)存儲單元。網(wǎng)絡(luò)輸出yi為這C個(gè)對應(yīng)單元中值(即權(quán)wi)的累加結(jié)果,對某一輸入樣本,總可通過調(diào)整權(quán)值達(dá)到期望輸出值。由圖1可以看出,每一輸入樣本對應(yīng)于存儲區(qū)A中的C個(gè)單元,當(dāng)各樣本分散存儲在A中時(shí),在S中比較靠近的那些樣本就會在A中出現(xiàn)交疊現(xiàn)象,其輸出值也比較相近,即這C個(gè)單元遵循"輸入相鄰,輸出相近"的原則,這種現(xiàn)象被稱為CMAC神經(jīng)網(wǎng)絡(luò)的局部泛化特性,C為泛化參數(shù):C越大,對樣本的映射關(guān)系影響越大,泛
[1] [2] [3] [4]
【CMAC網(wǎng)絡(luò)在機(jī)器人手眼系統(tǒng)位置控制中的應(yīng)用】相關(guān)文章:
CMAC網(wǎng)絡(luò)建模在非線性預(yù)測控制中的應(yīng)用04-28
基于RBF網(wǎng)絡(luò)的PID控制在溫度控制系統(tǒng)中的應(yīng)用04-28
最優(yōu)跟蹤在電液位置系統(tǒng)中應(yīng)用04-30
西門子列車網(wǎng)絡(luò)控制系統(tǒng)在廣州地鐵中的應(yīng)用04-28
先進(jìn)控制方法在飛行控制系統(tǒng)設(shè)計(jì)中的應(yīng)用04-27
PLC在火力電廠控制系統(tǒng)中的應(yīng)用04-29
光纖通道在火箭控制系統(tǒng)中的應(yīng)用04-28
變頻調(diào)速在水位控制系統(tǒng)中的應(yīng)用05-01