欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案

時間:2023-05-02 02:25:04 初中數(shù)學教案 我要投稿
  • 相關推薦

合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案

石佛鎮(zhèn)素質(zhì)教育研討會

合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案

教研課

教案設計

教者:龍秀明

教學課題:合比性質(zhì)和等比性質(zhì)

教學目標 :1、掌握合比性質(zhì)的等比性質(zhì),并會用它們進行簡單的比例變形

2、會將合比性質(zhì)、等比性質(zhì)用于比例線段。

3、提高學生類比聯(lián)想、推廣命題的能力。

教學重、難點:

熟練地、靈活地運用合比性質(zhì)與等比性質(zhì)。

課前準備:

小黑板、幻燈機及幻燈片。

教學過程 :

一、復習引入:

我們在前邊學習了線段的比,比例的有關概念及性質(zhì),那么請同學們回憶

1、什么叫線段的比?

2、什么叫成比例線段?

我們還學習了比例的基本性質(zhì),那么,除此之外,比例還有一些什么性質(zhì)呢?

這就是本節(jié)課我們將要研究的比例的合比性質(zhì)與等比性質(zhì)。(出示課題:合比性質(zhì)與等比性質(zhì))

那么,通過本節(jié)課的學習我們要達到一個什么樣的要求呢?(出示小黑板)看學習目標1、2,(全班同學齊讀)

下邊請同學們再回憶,我們在上一章學習的平等線等分線段定理是如何敘述的?(抽同學回答)

請看幻燈(投影顯示)

二、(用特殊化方法)探索合比性質(zhì)。

1、復習,已知:一組平行線在直線l上截得的線段AB=BC=CD=DE=EF則由平行線等分線段定理可得一個結論:即AB=BC=CD=DE=EF。

2、將上述結論改寫成比例式,由此猜想得出結論,引導學生思考:如果設在l上截得的每一份為k,問AD=?DF=?

又設在l1上截得的一等份為m,問AD=?DF=?

?

觀察以上分析,可得出一個什么樣的結論?

又觀察 與 有什么關系?對于一般的比例

式都有這一個關系嗎?請猜一猜。

猜想:學生口述(同學間可相互討論、研究)

教師根據(jù)學生口述、寫出:

如果

3、證明猜想,得出合比性質(zhì),

我們這個猜想,是否正確呢?

(1)啟發(fā)學生觀察,已知與未知的關系,尋找證明思路,證法一:(設比法)

證法二、(利用等比性質(zhì)2)

∵     ∴    ∴

(2)類比聯(lián)想,得到分比性質(zhì)。

如果

學生自由討論,可仿上邊自己證明結論。

在今后,這兩種情形都叫合比性質(zhì),即

如果

(3)理解合比性質(zhì)的內(nèi)容,師生一起用文字語言敘述。

4、類比聯(lián)想,將合比性質(zhì)推廣。

在合比性質(zhì)的表達式中,

(1)比例的二、四項保持不變,

(2)比例的前后磺對應求和或差,作為新比例式的第一、三比例項。

由此,可作出以下類比聯(lián)想,并使用比例的基本性質(zhì)進行證明。

猜想一,(教師引導)  如果

二    ……       如果

三    ……       如果 等等。

對這幾個猜想出來的問題,其基本思考方法有兩種:

(1)通過一定的方法,將它們變形利用合比性質(zhì)的結果,證明時,可靈活運用以下變形方法。

①同時交換比例的內(nèi)或外項,(更比)

如果

②同時交換比例的前后項,(反比)

如果

比如證明猜想三,如果         

(2)對原合比性質(zhì)的證明方法進行類比、聯(lián)想來進行證明(設比法)

三、利用合比性質(zhì)來證明等比性質(zhì)的特例,并推廣。

1、練習(投影顯示)

證明:

2、觀察上述練習的兩個結論,并對一般情況作出猜想,對練習中相等的比值的比個數(shù)進行推廣。

如果

3、利用設比法進行證明,得出等比性質(zhì),同學們自己練習,后與教材P20對比。

4、強調(diào)證明方法“設比法”。

設幾個相等的比值為k,用它們表示出每個比的前項(或后項)利用代數(shù)運算證明比例問題,這種思想方法在比例問題中經(jīng)常用到。

四、簡單運用(出示小黑板)

(1)已知:         ,       

(2)已知:       

(3)已知:        =      

注意:①合比性質(zhì)與等比性質(zhì)的證明方法和結論都很重要,都可用來證明有關比例式的問題。如第三題一問

解法1、   

解法2、

第二問可用解法2。

② 還常以另一種形式出現(xiàn),即x:y:z=4:3:6但此時不能設 。

五、師生共同小結,看書完成P203練習

1、合比性質(zhì),等比性質(zhì)及常用變形,尤其注意等比性質(zhì)的使用條件。

2、證明兩個性質(zhì)時所用到的“設比法”的證明方法。

3、類比聯(lián)想,推廣命題,由特殊到一般,再進行證明的方法。

六、練習:(1)已知 求 的值;

(2)已知 求 的值;

(3)已知 求 的值;

(4)已知 試求 的值。

由(4)題思考通過作第(4)題得出結論,結合前邊所學內(nèi)容猜想,你能得出什么結論,并試證之。

板書設計 :

合比性質(zhì)與等比性質(zhì)

1、合比性質(zhì):         2、等比性質(zhì):       小黑板①②③

內(nèi)容                  內(nèi)容                小結1、

證明:                證明:                  2、

推廣①                推廣

石佛鎮(zhèn)素質(zhì)教育研討會

教研課

教案設計

教者:龍秀明

教學課題:合比性質(zhì)和等比性質(zhì)

教學目標 :1、掌握合比性質(zhì)的等比性質(zhì),并會用它們進行簡單的比例變形

2、會將合比性質(zhì)、等比性質(zhì)用于比例線段。

3、提高學生類比聯(lián)想、推廣命題的能力。

教學重、難點:

熟練地、靈活地運用合比性質(zhì)與等比性質(zhì)。

課前準備:

小黑板、幻燈機及幻燈片。

教學過程 :

一、復習引入:

我們在前邊學習了線段的比,比例的有關概念及性質(zhì),那么請同學們回憶

1、什么叫線段的比?

2、什么叫成比例線段?

我們還學習了比例的基本性質(zhì),那么,除此之外,比例還有一些什么性質(zhì)呢?

這就是本節(jié)課我們將要研究的比例的合比性質(zhì)與等比性質(zhì)。(出示課題:合比性質(zhì)與等比性質(zhì))

那么,通過本節(jié)課的學習我們要達到一個什么樣的要求呢?(出示小黑板)看學習目標1、2,(全班同學齊讀)

下邊請同學們再回憶,我們在上一章學習的平等線等分線段定理是如何敘述的?(抽同學回答)

請看幻燈(投影顯示)

二、(用特殊化方法)探索合比性質(zhì)。

1、復習,已知:一組平行線在直線l上截得的線段AB=BC=CD=DE=EF則由平行線等分線段定理可得一個結論:即AB=BC=CD=DE=EF。

2、將上述結論改寫成比例式,由此猜想得出結論,引導學生思考:如果設在l上截得的每一份為k,問AD=?DF=?

?

又設在l1上截得的一等份為m,問AD=?DF=?

觀察以上分析,可得出一個什么樣的結論?

又觀察 與 有什么關系?對于一般的比例

式都有這一個關系嗎?請猜一猜。

猜想:學生口述(同學間可相互討論、研究)

教師根據(jù)學生口述、寫出:

如果

3、證明猜想,得出合比性質(zhì),

我們這個猜想,是否正確呢?

(1)啟發(fā)學生觀察,已知與未知的關系,尋找證明思路,證法一:(設比法)

證法二、(利用等比性質(zhì)2)

∵     ∴    ∴

(2)類比聯(lián)想,得到分比性質(zhì)。

如果

學生自由討論,可仿上邊自己證明結論。

在今后,這兩種情形都叫合比性質(zhì),即

如果

(3)理解合比性質(zhì)的內(nèi)容,師生一起用文字語言敘述。

4、類比聯(lián)想,將合比性質(zhì)推廣。

在合比性質(zhì)的表達式中,

(1)比例的二、四項保持不變,

(2)比例的前后磺對應求和或差,作為新比例式的第一、三比例項。

由此,可作出以下類比聯(lián)想,并使用比例的基本性質(zhì)進行證明。

猜想一,(教師引導)  如果

二    ……       如果

三    ……       如果 等等。

對這幾個猜想出來的問題,其基本思考方法有兩種:

(1)通過一定的方法,將它們變形利用合比性質(zhì)的結果,證明時,可靈活運用以下變形方法。

①同時交換比例的內(nèi)或外項,(更比)

如果

②同時交換比例的前后項,(反比)

如果

比如證明猜想三,如果         

(2)對原合比性質(zhì)的證明方法進行類比、聯(lián)想來進行證明(設比法)

三、利用合比性質(zhì)來證明等比性質(zhì)的特例,并推廣。

1、練習(投影顯示)

證明:

2、觀察上述練習的兩個結論,并對一般情況作出猜想,對練習中相等的比值的比個數(shù)進行推廣。

如果

3、利用設比法進行證明,得出等比性質(zhì),同學們自己練習,后與教材P20對比。

4、強調(diào)證明方法“設比法”。

設幾個相等的比值為k,用它們表示出每個比的前項(或后項)利用代數(shù)運算證明比例問題,這種思想方法在比例問題中經(jīng)常用到。

四、簡單運用(出示小黑板)

(1)已知:         ,       

(2)已知:       

(3)已知:        =      

注意:①合比性質(zhì)與等比性質(zhì)的證明方法和結論都很重要,都可用來證明有關比例式的問題。如第三題一問

解法1、   

解法2、

第二問可用解法2。

② 還常以另一種形式出現(xiàn),即x:y:z=4:3:6但此時不能設 。

五、師生共同小結,看書完成P203練習

1、合比性質(zhì),等比性質(zhì)及常用變形,尤其注意等比性質(zhì)的使用條件。

2、證明兩個性質(zhì)時所用到的“設比法”的證明方法。

3、類比聯(lián)想,推廣命題,由特殊到一般,再進行證明的方法。

六、練習:(1)已知 求 的值;

(2)已知 求 的值;

(3)已知 求 的值;

(4)已知 試求 的值。

由(4)題思考通過作第(4)題得出結論,結合前邊所學內(nèi)容猜想,你能得出什么結論,并試證之。

板書設計 :

合比性質(zhì)與等比性質(zhì)

1、合比性質(zhì):         2、等比性質(zhì):       小黑板①②③

內(nèi)容                  內(nèi)容                小結1、

證明:                證明:                  2、

推廣①                推廣

合比性質(zhì)和等比性質(zhì)例 —— 初中數(shù)學第四冊教案

【合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案】相關文章:

數(shù)學教案:分數(shù)的意義和性質(zhì)02-04

分數(shù)的意義和性質(zhì)教案01-24

數(shù)學教案:分數(shù)的意義和性質(zhì)9篇02-04

菱形的判定和性質(zhì)05-01

小學數(shù)學《等式的性質(zhì)》優(yōu)秀教案10-14

小數(shù)的性質(zhì)小學數(shù)學教案04-29

比例的意義和基本性質(zhì)的教案02-25

圓的性質(zhì)教案04-25

比例的意義和基本性質(zhì)教案02-16

《小數(shù)的性質(zhì)》教案02-19