- 相關推薦
合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案
石佛鎮(zhèn)素質(zhì)教育研討會
教研課
教案設計
教者:龍秀明
教學課題:合比性質(zhì)和等比性質(zhì)
教學目標 :1、掌握合比性質(zhì)的等比性質(zhì),并會用它們進行簡單的比例變形
2、會將合比性質(zhì)、等比性質(zhì)用于比例線段。
3、提高學生類比聯(lián)想、推廣命題的能力。
教學重、難點:
熟練地、靈活地運用合比性質(zhì)與等比性質(zhì)。
課前準備:
小黑板、幻燈機及幻燈片。
教學過程 :
一、復習引入:
我們在前邊學習了線段的比,比例的有關概念及性質(zhì),那么請同學們回憶
1、什么叫線段的比?
2、什么叫成比例線段?
我們還學習了比例的基本性質(zhì),那么,除此之外,比例還有一些什么性質(zhì)呢?
這就是本節(jié)課我們將要研究的比例的合比性質(zhì)與等比性質(zhì)。(出示課題:合比性質(zhì)與等比性質(zhì))
那么,通過本節(jié)課的學習我們要達到一個什么樣的要求呢?(出示小黑板)看學習目標1、2,(全班同學齊讀)
下邊請同學們再回憶,我們在上一章學習的平等線等分線段定理是如何敘述的?(抽同學回答)
請看幻燈(投影顯示)
二、(用特殊化方法)探索合比性質(zhì)。
1、復習,已知:一組平行線在直線l上截得的線段AB=BC=CD=DE=EF則由平行線等分線段定理可得一個結論:即AB=BC=CD=DE=EF。
2、將上述結論改寫成比例式,由此猜想得出結論,引導學生思考:如果設在l上截得的每一份為k,問AD=?DF=?
?
又設在l1上截得的一等份為m,問AD=?DF=?
?
觀察以上分析,可得出一個什么樣的結論?
又觀察 與 有什么關系?對于一般的比例
式都有這一個關系嗎?請猜一猜。
猜想:學生口述(同學間可相互討論、研究)
教師根據(jù)學生口述、寫出:
如果
3、證明猜想,得出合比性質(zhì),
我們這個猜想,是否正確呢?
(1)啟發(fā)學生觀察,已知與未知的關系,尋找證明思路,證法一:(設比法)
設
∵
∴
證法二、(利用等比性質(zhì)2)
∵ ∴ ∴
(2)類比聯(lián)想,得到分比性質(zhì)。
如果
學生自由討論,可仿上邊自己證明結論。
在今后,這兩種情形都叫合比性質(zhì),即
如果
(3)理解合比性質(zhì)的內(nèi)容,師生一起用文字語言敘述。
4、類比聯(lián)想,將合比性質(zhì)推廣。
在合比性質(zhì)的表達式中,
(1)比例的二、四項保持不變,
(2)比例的前后磺對應求和或差,作為新比例式的第一、三比例項。
由此,可作出以下類比聯(lián)想,并使用比例的基本性質(zhì)進行證明。
猜想一,(教師引導) 如果
二 …… 如果
三 …… 如果 等等。
對這幾個猜想出來的問題,其基本思考方法有兩種:
(1)通過一定的方法,將它們變形利用合比性質(zhì)的結果,證明時,可靈活運用以下變形方法。
①同時交換比例的內(nèi)或外項,(更比)
如果
②同時交換比例的前后項,(反比)
如果
比如證明猜想三,如果
(2)對原合比性質(zhì)的證明方法進行類比、聯(lián)想來進行證明(設比法)
三、利用合比性質(zhì)來證明等比性質(zhì)的特例,并推廣。
1、練習(投影顯示)
證明:
2、觀察上述練習的兩個結論,并對一般情況作出猜想,對練習中相等的比值的比個數(shù)進行推廣。
如果
3、利用設比法進行證明,得出等比性質(zhì),同學們自己練習,后與教材P20對比。
4、強調(diào)證明方法“設比法”。
設幾個相等的比值為k,用它們表示出每個比的前項(或后項)利用代數(shù)運算證明比例問題,這種思想方法在比例問題中經(jīng)常用到。
四、簡單運用(出示小黑板)
(1)已知: ,
(2)已知:
(3)已知: =
注意:①合比性質(zhì)與等比性質(zhì)的證明方法和結論都很重要,都可用來證明有關比例式的問題。如第三題一問
解法1、
解法2、
第二問可用解法2。
② 還常以另一種形式出現(xiàn),即x:y:z=4:3:6但此時不能設 。
五、師生共同小結,看書完成P203練習
1、合比性質(zhì),等比性質(zhì)及常用變形,尤其注意等比性質(zhì)的使用條件。
2、證明兩個性質(zhì)時所用到的“設比法”的證明方法。
3、類比聯(lián)想,推廣命題,由特殊到一般,再進行證明的方法。
六、練習:(1)已知 求 的值;
(2)已知 求 的值;
(3)已知 求 的值;
(4)已知 試求 的值。
由(4)題思考通過作第(4)題得出結論,結合前邊所學內(nèi)容猜想,你能得出什么結論,并試證之。
板書設計 :
合比性質(zhì)與等比性質(zhì)
1、合比性質(zhì): 2、等比性質(zhì): 小黑板①②③
內(nèi)容 內(nèi)容 小結1、
證明: 證明: 2、
推廣① 推廣
②
石佛鎮(zhèn)素質(zhì)教育研討會
教研課
教案設計
教者:龍秀明
教學課題:合比性質(zhì)和等比性質(zhì)
教學目標 :1、掌握合比性質(zhì)的等比性質(zhì),并會用它們進行簡單的比例變形
2、會將合比性質(zhì)、等比性質(zhì)用于比例線段。
3、提高學生類比聯(lián)想、推廣命題的能力。
教學重、難點:
熟練地、靈活地運用合比性質(zhì)與等比性質(zhì)。
課前準備:
小黑板、幻燈機及幻燈片。
教學過程 :
一、復習引入:
我們在前邊學習了線段的比,比例的有關概念及性質(zhì),那么請同學們回憶
1、什么叫線段的比?
2、什么叫成比例線段?
我們還學習了比例的基本性質(zhì),那么,除此之外,比例還有一些什么性質(zhì)呢?
這就是本節(jié)課我們將要研究的比例的合比性質(zhì)與等比性質(zhì)。(出示課題:合比性質(zhì)與等比性質(zhì))
那么,通過本節(jié)課的學習我們要達到一個什么樣的要求呢?(出示小黑板)看學習目標1、2,(全班同學齊讀)
下邊請同學們再回憶,我們在上一章學習的平等線等分線段定理是如何敘述的?(抽同學回答)
請看幻燈(投影顯示)
二、(用特殊化方法)探索合比性質(zhì)。
1、復習,已知:一組平行線在直線l上截得的線段AB=BC=CD=DE=EF則由平行線等分線段定理可得一個結論:即AB=BC=CD=DE=EF。
2、將上述結論改寫成比例式,由此猜想得出結論,引導學生思考:如果設在l上截得的每一份為k,問AD=?DF=?
?
又設在l1上截得的一等份為m,問AD=?DF=?
?
觀察以上分析,可得出一個什么樣的結論?
又觀察 與 有什么關系?對于一般的比例
式都有這一個關系嗎?請猜一猜。
猜想:學生口述(同學間可相互討論、研究)
教師根據(jù)學生口述、寫出:
如果
3、證明猜想,得出合比性質(zhì),
我們這個猜想,是否正確呢?
(1)啟發(fā)學生觀察,已知與未知的關系,尋找證明思路,證法一:(設比法)
設
∵
∴
證法二、(利用等比性質(zhì)2)
∵ ∴ ∴
(2)類比聯(lián)想,得到分比性質(zhì)。
如果
學生自由討論,可仿上邊自己證明結論。
在今后,這兩種情形都叫合比性質(zhì),即
如果
(3)理解合比性質(zhì)的內(nèi)容,師生一起用文字語言敘述。
4、類比聯(lián)想,將合比性質(zhì)推廣。
在合比性質(zhì)的表達式中,
(1)比例的二、四項保持不變,
(2)比例的前后磺對應求和或差,作為新比例式的第一、三比例項。
由此,可作出以下類比聯(lián)想,并使用比例的基本性質(zhì)進行證明。
猜想一,(教師引導) 如果
二 …… 如果
三 …… 如果 等等。
對這幾個猜想出來的問題,其基本思考方法有兩種:
(1)通過一定的方法,將它們變形利用合比性質(zhì)的結果,證明時,可靈活運用以下變形方法。
①同時交換比例的內(nèi)或外項,(更比)
如果
②同時交換比例的前后項,(反比)
如果
比如證明猜想三,如果
(2)對原合比性質(zhì)的證明方法進行類比、聯(lián)想來進行證明(設比法)
三、利用合比性質(zhì)來證明等比性質(zhì)的特例,并推廣。
1、練習(投影顯示)
證明:
2、觀察上述練習的兩個結論,并對一般情況作出猜想,對練習中相等的比值的比個數(shù)進行推廣。
如果
3、利用設比法進行證明,得出等比性質(zhì),同學們自己練習,后與教材P20對比。
4、強調(diào)證明方法“設比法”。
設幾個相等的比值為k,用它們表示出每個比的前項(或后項)利用代數(shù)運算證明比例問題,這種思想方法在比例問題中經(jīng)常用到。
四、簡單運用(出示小黑板)
(1)已知: ,
(2)已知:
(3)已知: =
注意:①合比性質(zhì)與等比性質(zhì)的證明方法和結論都很重要,都可用來證明有關比例式的問題。如第三題一問
解法1、
解法2、
第二問可用解法2。
② 還常以另一種形式出現(xiàn),即x:y:z=4:3:6但此時不能設 。
五、師生共同小結,看書完成P203練習
1、合比性質(zhì),等比性質(zhì)及常用變形,尤其注意等比性質(zhì)的使用條件。
2、證明兩個性質(zhì)時所用到的“設比法”的證明方法。
3、類比聯(lián)想,推廣命題,由特殊到一般,再進行證明的方法。
六、練習:(1)已知 求 的值;
(2)已知 求 的值;
(3)已知 求 的值;
(4)已知 試求 的值。
由(4)題思考通過作第(4)題得出結論,結合前邊所學內(nèi)容猜想,你能得出什么結論,并試證之。
板書設計 :
合比性質(zhì)與等比性質(zhì)
1、合比性質(zhì): 2、等比性質(zhì): 小黑板①②③
內(nèi)容 內(nèi)容 小結1、
證明: 證明: 2、
推廣① 推廣
②
合比性質(zhì)和等比性質(zhì)例 —— 初中數(shù)學第四冊教案
【合比性質(zhì)和等比性質(zhì)例 - 初中數(shù)學第四冊教案】相關文章:
數(shù)學教案:分數(shù)的意義和性質(zhì)02-04
分數(shù)的意義和性質(zhì)教案01-24
數(shù)學教案:分數(shù)的意義和性質(zhì)9篇02-04
菱形的判定和性質(zhì)05-01
小學數(shù)學《等式的性質(zhì)》優(yōu)秀教案10-14
小數(shù)的性質(zhì)小學數(shù)學教案04-29
比例的意義和基本性質(zhì)的教案02-25
圓的性質(zhì)教案04-25
比例的意義和基本性質(zhì)教案02-16
《小數(shù)的性質(zhì)》教案02-19