- 相關(guān)推薦
初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》
我說課的內(nèi)容是人教版七年級(jí)(下)冊(cè)第七章第三節(jié)《多邊形及其內(nèi)角和》的第二課時(shí),
初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》
。我將在新課程理念的指導(dǎo)下從以下七個(gè)方面進(jìn)行說課。一、教材分析
多邊形的內(nèi)角和是在三角形內(nèi)角和知識(shí)基礎(chǔ)上的拓廣和發(fā)展,是從特殊到一般的深化,是后面學(xué)習(xí)多邊形鑲嵌的基礎(chǔ),也是今后學(xué)習(xí)空間幾何的基礎(chǔ),學(xué)好多邊形內(nèi)角和的內(nèi)容,為學(xué)生認(rèn)識(shí)探索客觀世界中不同形狀物體存在的一般規(guī)律打下基礎(chǔ),對(duì)發(fā)展學(xué)生的空間觀念和幾何直覺有很大的幫助。
二、學(xué)情分析
1、我所任教的班級(jí),大部分學(xué)生來自農(nóng)村,由于自小獨(dú)立性較強(qiáng),具有較強(qiáng)的理解能力和應(yīng)用能力,喜歡合作討論,對(duì)數(shù)學(xué)學(xué)習(xí)有較濃厚的興趣。大部分學(xué)生學(xué)習(xí)習(xí)慣和學(xué)習(xí)方式較好。
2、本節(jié)課讓學(xué)生通過實(shí)驗(yàn)探索多邊形內(nèi)角和公式。在此之前學(xué)生對(duì)三角形、特殊四邊形的內(nèi)角和已經(jīng)有了一定的理解和認(rèn)識(shí)。估計(jì)學(xué)生在探究任意四邊形內(nèi)角和時(shí)會(huì)想到量、拼、分的方法,但是分割“多邊形為三角形”這一過程會(huì)是學(xué)生學(xué)習(xí)的難點(diǎn),在探究的過程中教師要想辦法把難點(diǎn)分散,有利于學(xué)生對(duì)本課知識(shí)的學(xué)習(xí)和掌握。
三、教學(xué)目標(biāo)分析
新的課程標(biāo)準(zhǔn)注重學(xué)生經(jīng)歷觀察、操作、猜想、歸納等探索過程。根據(jù)新課標(biāo)和本節(jié)課的內(nèi)容特點(diǎn)我確定以下教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)。
【知識(shí)與技能】
掌握多邊形的內(nèi)角和公式,并能熟練運(yùn)用。
【數(shù)學(xué)思考】
(1)通過測量,類比,推理等教學(xué)活動(dòng),探索多邊形的內(nèi)角和公式,感受數(shù)學(xué)思考過程的條理性,發(fā)展推理能力和語言表達(dá)能力。
(2)通過把多邊形轉(zhuǎn)化成三角形體會(huì)轉(zhuǎn)化思想在幾何中的運(yùn)用,同時(shí)讓學(xué)生體會(huì)從特殊到一般的認(rèn)識(shí)問題的方法。
【解決問題】
通過探索多邊形內(nèi)角和公式,讓學(xué)生嘗試從不同的角度尋求解決問題的方法,并能有效的解決問題。
【情感態(tài)度】
1、通過動(dòng)手實(shí)踐、相互間的交流,進(jìn)一步激發(fā)學(xué)習(xí)熱情和求知欲望。
2、體驗(yàn)猜想得到證實(shí)的成就感,在解題中感受生活中數(shù)學(xué)的存在,體驗(yàn)數(shù)學(xué)充滿探索。并在探索過程中激發(fā)、培養(yǎng)學(xué)生的愛國主義熱情。
基于以上教學(xué)目標(biāo),我確定以下教學(xué)重難點(diǎn):
【教學(xué)重點(diǎn)】探索多邊形的內(nèi)角和公式。
【教學(xué)難點(diǎn)】探究多邊形內(nèi)角和時(shí),如何把多邊形轉(zhuǎn)化成三角形。
因此,本節(jié)課我借助課件輔助教學(xué),可以更好的突破重難點(diǎn),增強(qiáng)直觀效果,豐富學(xué)生的感性認(rèn)識(shí),提高課堂效率。
四、教法和學(xué)法分析
本節(jié)課借鑒了美國教育家杜威的“在做中學(xué)”的理論和葉圣陶先生所倡導(dǎo)的“解放學(xué)生的手,解放學(xué)生的大腦,解放學(xué)生的時(shí)間”的思想,我確定如下教法和學(xué)法:
1.教學(xué)方法:
根據(jù)本節(jié)課的教學(xué)目標(biāo)、教材內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),我采用啟發(fā)式、探索式教學(xué)方法,意在幫助學(xué)生通過觀察,自己動(dòng)手,從實(shí)踐中獲得知識(shí),
資料共享平臺(tái)
《初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》》(http://m.lotusphilosophies.com)。整個(gè)探究學(xué)習(xí)的過程充滿了師生之間、學(xué)生之間的交流和互動(dòng),體現(xiàn)了教師是教學(xué)活動(dòng)的組織者、引導(dǎo)者,而學(xué)生才是學(xué)習(xí)的主體。2.學(xué)習(xí)方法:
利用學(xué)生的好奇心設(shè)疑,解疑,組織活潑互動(dòng)、有效的教學(xué)活動(dòng),鼓勵(lì)學(xué)生積極參與,大膽猜想,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的內(nèi)容。
五、說教學(xué)流程
1、環(huán)節(jié)一:創(chuàng)設(shè)情景、引入新課
情景:請(qǐng)學(xué)生觀察“上海世博園”的宣傳視頻。
從 “情境認(rèn)知理論”得知:圖文加情境能有效提高課堂教學(xué)效率,而圖文和情境并用可使效率提高到300%。通過觀看上海世博園視頻,能激發(fā)學(xué)生的愛國主義熱情,并引導(dǎo)學(xué)生大膽提出問題,對(duì)建筑物的外觀抽象成已知的三角形、長方形、正方形等多邊形。提出問題:三角形的內(nèi)角和是多少?設(shè)計(jì)這個(gè)問題的目的是因?yàn)樘剿鞫噙呅蝺?nèi)角和與邊數(shù)關(guān)系的根本方法是把多邊形轉(zhuǎn)化為多個(gè)三角形,因此喚醒學(xué)生已有知識(shí)“三角形內(nèi)角和等于180°”有助于解決后面的問題。接下來提出問題,正方形、長方形的內(nèi)角和是多少?學(xué)生回答后進(jìn)入新課內(nèi)容,根據(jù)三角形的內(nèi)角和是個(gè)確定值,引導(dǎo)學(xué)生猜想任意四邊形的內(nèi)角和是多少?喚醒學(xué)生已有知識(shí),將有助于本堂課問題的解決,也為后面習(xí)題作鋪墊。
2、環(huán)節(jié)二:合作交流、探索新知。
活動(dòng)1:
猜一猜:圍繞“任意四邊形的內(nèi)角和等于多少度?”這一問題引導(dǎo)學(xué)生從正方形、長方形這兩個(gè)特殊的多邊形的內(nèi)角和,很容易猜測出四邊形的內(nèi)角和等于360度。
議一議:你是怎樣得到的?你能找到幾種方法?這個(gè)環(huán)節(jié)學(xué)生可能出現(xiàn)“度量” 、“剪拼”、“作輔助線” 等等甚至更多的方法。為此我又拋出問題:五、六、七邊形的內(nèi)角和怎么求?你發(fā)現(xiàn)了什么?通過這個(gè)問題讓學(xué)生自然過渡到用作輔助線的方法求多邊形的內(nèi)角和,同時(shí)也要告訴學(xué)生在測量和剪拼活動(dòng)中可能會(huì)產(chǎn)生誤差,由此感受到作輔助線在解決幾何問題中的必要性。這一環(huán)節(jié)要給予學(xué)生充分的探究時(shí)間,鼓勵(lì)學(xué)生積極參與,合作交流,用自己的語言表達(dá)解決問題的方式方法,發(fā)展學(xué)生的語言表達(dá)能力與推理能力。
針對(duì)不同層次的學(xué)生,要適當(dāng)?shù)囊龑?dǎo)學(xué)生利用作輔助線的方法把多邊形轉(zhuǎn)化為三角形,鼓勵(lì)學(xué)生尋找多種分割形式,深入領(lǐng)會(huì)轉(zhuǎn)化的本質(zhì)——將四邊形轉(zhuǎn)化為三角形問題來解決。然后讓學(xué)生表達(dá)自己解決問題的方法,并用電腦演示四邊形分割成三角形的多種方法讓學(xué)生體驗(yàn)數(shù)學(xué)活動(dòng)充滿探索,體驗(yàn)解決問題策略的多樣性。
想一想:這些分法有什么異同點(diǎn)?學(xué)生積極思考,大膽發(fā)言,教師給予適當(dāng)?shù)脑u(píng)價(jià)和鼓勵(lì)。教師在學(xué)生回答的基礎(chǔ)上小結(jié):借助輔助線把四邊形分割成幾個(gè)三角形分割的關(guān)鍵在于公共點(diǎn)的選取,并演示公共點(diǎn)在圖形內(nèi)、外、頂點(diǎn)處。利用三角形內(nèi)角和求得四邊形內(nèi)角和,這是數(shù)學(xué)學(xué)習(xí)中的一種常用轉(zhuǎn)化的思想方法。
活動(dòng)2:
做一做:選一種你喜歡的上述分割的方法,類比求四邊形的內(nèi)角和方法求五邊形、六邊形、七邊形等的內(nèi)角和,讓學(xué)生再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想的理解,通過增加圖形的復(fù)雜性,再一次經(jīng)歷轉(zhuǎn)化的過程,加深對(duì)轉(zhuǎn)化思想方法的理解,體會(huì)由簡單到復(fù)雜,由特殊到一般的思想方法。
【初中數(shù)學(xué)說課稿《多邊形的內(nèi)角和》】相關(guān)文章:
初中數(shù)學(xué)《數(shù)軸》說課稿模板10-11
初中數(shù)學(xué)說課稿模板10-28
初中數(shù)學(xué)說課稿模板06-24
初中數(shù)學(xué)《勾股定理》說課稿范文09-25
初中數(shù)學(xué)《有理數(shù)的加法》說課稿10-11