欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

高中數(shù)學(xué)教案

時(shí)間:2023-04-30 06:54:13 高中數(shù)學(xué)教案 我要投稿

高中數(shù)學(xué)教案(匯編15篇)

  作為一名人民教師,通常會(huì)被要求編寫教案,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)教案(匯編15篇)

高中數(shù)學(xué)教案1

  1.1.1 任意角

  教學(xué)目標(biāo)

  (一) 知識(shí)與技能目標(biāo)

  理解任意角的概念(包括正角、負(fù)角、零角) 與區(qū)間角的概念.

 。ǘ 過程與能力目標(biāo)

  會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.

 。ㄈ 情感與態(tài)度目標(biāo)

  1. 提高學(xué)生的推理能力;

  2.培養(yǎng)學(xué)生應(yīng)用意識(shí). 教學(xué)重點(diǎn)

  任意角概念的理解;區(qū)間角的集合的書寫. 教學(xué)難點(diǎn)

  終邊相同角的集合的表示;區(qū)間角的集合的書寫.

  教學(xué)過程

  一、引入:

  1.回顧角的定義

 、俳堑牡谝环N定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角.

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

  二、新課:

  1.角的有關(guān)概念:

 、俳堑亩x:

  角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形.

 、诮堑拿Q:

 、劢堑姆诸悾 A

  正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

  負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

  ④注意:

  ⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡(jiǎn)化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負(fù)角和零角.

  ⑤練習(xí):請(qǐng)說出角α、β、γ各是多少度?

  2.象限角的概念:

  ①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個(gè)角是第幾象限角.

  例1.在直角坐標(biāo)系中,作出下列各角,并指出它們是第幾象限的角.

 、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;

  答:分別為1、2、3、4、1、2象限角.

  3.探究:教材P3面

  終邊相同的角的表示:

  所有與角α終邊相同的角,連同α在內(nèi),可構(gòu)成一個(gè)集合S={ β | β = α +

  k·360° ,

  k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個(gè)周角的和. 注意: ⑴ k∈Z

 、 α是任一角;

 、 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個(gè),它們相差

  360°的整數(shù)倍;

 、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

  例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

  ⑴-120°;

  ⑵640°;

 、牵950°12’.

  答:⑴240°,第三象限角;

 、280°,第四象限角;

 、129°48’,第二象限角;

  例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.

  例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

  4.課堂小結(jié)

 、俳堑亩x;

  ②角的分類:

  正角:按逆時(shí)針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角

  負(fù)角:按順時(shí)針方向旋轉(zhuǎn)形成的角

 、巯笙藿牵

 、芙K邊相同的角的表示法.

  5.課后作業(yè):

  ①閱讀教材P2-P5;

  ②教材P5練習(xí)第1-5題;

  ③教材P.9習(xí)題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,

  解:??角屬于第三象限,

  ? k·360°+180°<α<k·360°+270°(k∈Z)

  因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)

  故2α是第一、二象限或終邊在y軸的非負(fù)半軸上的角. 又k·180°+90°<

  各是第幾象限角?

 。糼·180°+135°(k∈Z) .

  <n·360°+135°(n∈Z) ,

  當(dāng)k為偶數(shù)時(shí),令k=2n(n∈Z),則n·360°+90°<此時(shí),

  屬于第二象限角

 。糿·360°+315°(n∈Z) ,

  當(dāng)k為奇數(shù)時(shí),令k=2n+1 (n∈Z),則n·360°+270°<此時(shí),

  屬于第四象限角

  因此

  屬于第二或第四象限角.

  1.1.2弧度制

 。ㄒ唬

  教學(xué)目標(biāo)

 。ǘ 知識(shí)與技能目標(biāo)

  理解弧度的意義;了解角的集合與實(shí)數(shù)集R之間的可建立起一一對(duì)應(yīng)的關(guān)系;熟記特殊角的弧度數(shù).

 。ㄈ 過程與能力目標(biāo)

  能正確地進(jìn)行弧度與角度之間的換算,能推導(dǎo)弧度制下的弧長(zhǎng)公式及扇形的面積公式,并能運(yùn)用公式解決一些實(shí)際問題

  (四) 情感與態(tài)度目標(biāo)

  通過新的度量角的單位制(弧度制)的引進(jìn),培養(yǎng)學(xué)生求異創(chuàng)新的精神;通過對(duì)弧度制與角度制下弧長(zhǎng)公式、扇形面積公式的對(duì)比,讓學(xué)生感受弧長(zhǎng)及扇形面積公式在弧度制下的簡(jiǎn)潔美. 教學(xué)重點(diǎn)

  弧度的概念.弧長(zhǎng)公式及扇形的面積公式的推導(dǎo)與證明. 教學(xué)難點(diǎn)

  “角度制”與“弧度制”的區(qū)別與聯(lián)系.

  教學(xué)過程

  一、復(fù)習(xí)角度制:

  初中所學(xué)的角度制是怎樣規(guī)定角的度量的'? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

  二、新課:

  1.引 入:

  由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進(jìn)制的,運(yùn)用起來不太方便.在數(shù)學(xué)和其他許多科學(xué)研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?

  2.定 義

  我們規(guī)定,長(zhǎng)度等于半徑的弧所對(duì)的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實(shí)際運(yùn)算中,常常將rad單位省略.

  3.思考:

 。1)一定大小的圓心角?所對(duì)應(yīng)的弧長(zhǎng)與半徑的比值是否是確定的?與圓的半徑大小有關(guān)嗎?

 。2)引導(dǎo)學(xué)生完成P6的探究并歸納: 弧度制的性質(zhì):

 、侔雸A所對(duì)的圓心角為

  ②整圓所對(duì)的圓心角為

 、壅堑幕《葦(shù)是一個(gè)正數(shù).

 、茇(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù).

 、萘憬堑幕《葦(shù)是零.

  ⑥角α的弧度數(shù)的絕對(duì)值|α|= .

  4.角度與弧度之間的轉(zhuǎn)換:

 、賹⒔嵌然癁榛《龋

  ②將弧度化為角度:

  5.常規(guī)寫法:

 、 用弧度數(shù)表示角時(shí),常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).

  ② 弧度與角度不能混用.

  弧長(zhǎng)等于弧所對(duì)應(yīng)的圓心角(的弧度數(shù))的絕對(duì)值與半徑的積.

  例1.把67°30’化成弧度.

  例2.把? rad化成度.

  例3.計(jì)算:

  (1)sin4

  (2)tan1.5.

  8.課后作業(yè):

 、匍喿x教材P6 –P8;

  ②教材P9練習(xí)第1、2、3、6題;

  ③教材P10面7、8題及B2、3題.

高中數(shù)學(xué)教案2

  教學(xué)準(zhǔn)備

  1.教學(xué)目標(biāo)

  1、知識(shí)與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).

  2、過程與方法:

 。1)通過實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

 。3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;

  3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

  教學(xué)重點(diǎn)/難點(diǎn)

  重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語言來刻畫函數(shù);

  難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

 。1)炮彈的射高與時(shí)間的變化關(guān)系問題;

 。2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;

 。3)“八五”計(jì)劃以來我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題.

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的'關(guān)系是否是函數(shù)關(guān)系.

  (二)研探新知

  1、函數(shù)的有關(guān)概念

 。1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

 。2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對(duì)應(yīng)關(guān)系和值域

 。3)區(qū)間的概念

 、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

  (4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?

  通過三個(gè)已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語言刻畫的定義,談?wù)勼w會(huì).

  師:歸納總結(jié)

 。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

  (2)求f(-3),f()的值;

 。3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

 。1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.

 。4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)

 。5)滿足實(shí)際問題有意義.

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

  2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結(jié)

  ①?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念.

 。ㄎ澹┰O(shè)置問題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語言來描述函數(shù),同時(shí)說出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系.

  課堂小結(jié)

高中數(shù)學(xué)教案3

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

  【過程與方法】

  經(jīng)歷三角函數(shù)的單調(diào)性的'探索過程,提升邏輯推理能力。

  【情感態(tài)度價(jià)值觀】

  在猜想計(jì)算的過程中,提高學(xué)習(xí)數(shù)學(xué)的興趣。

  二、教學(xué)重難點(diǎn)

  【教學(xué)重點(diǎn)】

  三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。

  【教學(xué)難點(diǎn)】

  探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。

  三、教學(xué)過程

 。ㄒ唬┮胄抡n

  提出問題:如何研究三角函數(shù)的單調(diào)性

  (四)小結(jié)作業(yè)

  提問:今天學(xué)習(xí)了什么?

  引導(dǎo)學(xué)生回顧:基本不等式以及推導(dǎo)證明過程。

  課后作業(yè):

  思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo)1.進(jìn)一步理解線性規(guī)劃的概念;會(huì)解簡(jiǎn)單的線性規(guī)劃問題;

  2.在運(yùn)用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;

  3.進(jìn)一步提高學(xué)生的合作意識(shí)和探究意識(shí)。

  教學(xué)重點(diǎn):線性規(guī)劃的概念及其解法

  教學(xué)難點(diǎn)

  代數(shù)問題幾何化的過程

  教學(xué)方法:啟發(fā)探究式

  教學(xué)手段運(yùn)用多媒體技術(shù)

  教學(xué)過程:1.實(shí)際問題引入。

  問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時(shí)70公里,平均耗油量為每小時(shí)6公升;小李駕車平均速度為每小時(shí)50公里,平均耗油量為每小時(shí)4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時(shí)間累計(jì)不能超過12小時(shí).問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

  2.探究和討論下列問題。

  (1)實(shí)際問題轉(zhuǎn)化為一個(gè)怎樣的數(shù)學(xué)問題?

  (2)滿足不等式組①的條件的點(diǎn)構(gòu)成的區(qū)域如何表示?

  (3)關(guān)于x、y的一個(gè)表達(dá)式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學(xué)生達(dá)成以下共識(shí):小王駕車時(shí)間x和小李駕車時(shí)間y受到時(shí)間(12小時(shí))和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關(guān)于x、y的一個(gè)表達(dá)式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點(diǎn)B(6,6)的直線所對(duì)應(yīng)的z最大.

  則zmax=6×70+6×50=720

  結(jié)論:小王和小李分別駕車6小時(shí)時(shí),行駛路程最遠(yuǎn)為720公里.

  解題反思:

  問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?

  3.線性規(guī)劃的有關(guān)概念。

  什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.

  4.進(jìn)一步探究線性規(guī)劃問題的解。

  問題二:若小王和小李駕車平均速度為每小時(shí)60公里和40公里,其它條件不變,問小王和小李分別駕車多少時(shí)間時(shí),行駛路程最遠(yuǎn)?

  要求:請(qǐng)你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。

  問題三:如果把不等式組①中的兩個(gè)“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結(jié)。

  (1)數(shù)學(xué)知識(shí);(2)數(shù)學(xué)思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習(xí):教材P.65-2,3;

  (3)在自己生活中尋找一個(gè)簡(jiǎn)單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。

  《一個(gè)數(shù)列的研究》教學(xué)設(shè)計(jì)

  教學(xué)目標(biāo):

  1.進(jìn)一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

  2.在對(duì)一個(gè)數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3.進(jìn)一步提高問題探究意識(shí)、知識(shí)應(yīng)用意識(shí)和同伴合作意識(shí)。

  教學(xué)重點(diǎn):

  問題的提出與解決

  教學(xué)難點(diǎn):

  如何進(jìn)行問題的探究

  教學(xué)方法:

  啟發(fā)探究式

  教學(xué)過程:

  問題:已知{an}是首項(xiàng)為1,公比為 的無窮等比數(shù)列。對(duì)于數(shù)列{an},提出你的問題,并進(jìn)行研究,你能得到一些什么樣的結(jié)論?

  研究方向提示:

  1.?dāng)?shù)列{an}是一個(gè)等比數(shù)列,可以從等比數(shù)列角度來進(jìn)行研究;

  2.研究所給數(shù)列的項(xiàng)之間的關(guān)系;

  3.研究所給數(shù)列的子數(shù)列;

  4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

  5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進(jìn)行研究;

  6.研究所給數(shù)列與其它知識(shí)的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實(shí)際意義等)。

  針對(duì)學(xué)生的研究情況,對(duì)所提問題進(jìn)行歸類,選擇部分類型問題共同進(jìn)行研究、分析與解決。

  課堂小結(jié):

  1.研究一個(gè)數(shù)列可以從哪些方面提出問題并進(jìn)行研究?

  2.你最喜歡哪位同學(xué)的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會(huì)有什么變化?

  2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進(jìn)行類比研究?

  開展研究性學(xué)習(xí),培養(yǎng)問題解決能力

  一、對(duì)“研究性學(xué)習(xí)”和“問題解決”的認(rèn)識(shí) 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對(duì)應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動(dòng)探究問題的'學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動(dòng):學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會(huì)生活中選擇課題,以類似科學(xué)研究的方式去主動(dòng)地獲取知識(shí)、應(yīng)用知識(shí)、解決問題。

  “問題解決”(problem solving)是美國(guó)數(shù)學(xué)教育界在二十世紀(jì)八十年代的主要口號(hào),即認(rèn)為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。

  問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實(shí)踐能力”。在數(shù)學(xué)教學(xué)活動(dòng)中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。

  二、“問題解決”課堂教學(xué)模式的建構(gòu)與實(shí)踐 以研究性學(xué)習(xí)活動(dòng)為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡(jiǎn)稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨(dú)立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識(shí)的能力,提高合作意識(shí)、探究意識(shí)和創(chuàng)新意識(shí)。

 。ㄒ唬╆P(guān)于“問題解決”課堂教學(xué)模式

  通過實(shí)施“問題解決”課堂教學(xué)模式,希望能夠達(dá)到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動(dòng)參與、團(tuán)結(jié)協(xié)作精神,增進(jìn)師生、同伴之間的情感交流,形成自覺運(yùn)用數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識(shí)。

 。ǘ⿺(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)

  數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會(huì)審題,會(huì)建模,會(huì)轉(zhuǎn)化,會(huì)歸類,會(huì)反思,會(huì)編題。

 。ㄈ皢栴}解決”課堂教學(xué)模式的教學(xué)流程

 。ㄋ模皢栴}解決”課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)

  1. 教學(xué)目標(biāo)的確定;

  2. 教學(xué)方法的選擇;

  3. 問題的選擇;

  4. 師生主體意識(shí)的體現(xiàn);

  5.教學(xué)策略的運(yùn)用。

 。ㄎ澹┝私鈱W(xué)生的數(shù)學(xué)問題解決能力的途徑

  (六)開展研究性學(xué)習(xí)活動(dòng)對(duì)教師的能力要求

高中數(shù)學(xué)教案5

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  數(shù)列求和的綜合應(yīng)用

  教學(xué)重難點(diǎn)

  數(shù)列求和的綜合應(yīng)用

  教學(xué)過程

  典例分析

  3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

  (1)求{an}的通項(xiàng)公式

  (2)求{|an|}的前n項(xiàng)和Tn

  4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=

  5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

  6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

  (1)求{an}的通項(xiàng)公式

  (2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式

  7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

  8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

  .已知數(shù)列{an},an∈N,Sn=(an+2)2

  (1)求證{an}是等差數(shù)列

  (2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值

  0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)

  (1)設(shè)f(x)的圖象的頂點(diǎn)的`橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

  (2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

  11.購(gòu)買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

  12.某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

  函數(shù)關(guān)系式是f(t)=銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是g(t)=-t/3+109/3(0≤t≤100)

  求這種商品的日銷售額的最大值

  注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過比較,確定最大值

高中數(shù)學(xué)教案6

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

  教學(xué)重難點(diǎn)

  掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題.

  教學(xué)過程

  等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出.

  【方法規(guī)律】

  1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題.方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法.

  2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義.特別地,在判斷三個(gè)實(shí)數(shù)

  a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

  3、在求等差數(shù)列前n項(xiàng)和的最大(小)值時(shí),常用函數(shù)的思想和方法加以解決.

  【示范舉例】

  例1:

  (1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為.

  (2)一個(gè)等比數(shù)列的`前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

  例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù).

  例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng).

高中數(shù)學(xué)教案7

  1.教學(xué)目標(biāo)

  (1)知識(shí)目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;

  2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標(biāo): 1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

  2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點(diǎn).難點(diǎn)

  (1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

  3.教學(xué)過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

  [引導(dǎo)] 畫圖建系

  [學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))

  解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時(shí)又如何呢?

  [學(xué)生活動(dòng)] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)m(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點(diǎn)間的距離公式,點(diǎn)m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  i.直接應(yīng)用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

  (1)圓心在原點(diǎn),半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點(diǎn) ,圓心在點(diǎn) .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應(yīng)用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的.方程為 ,求過圓上一點(diǎn) 的切線方程.

  [學(xué)生活動(dòng)]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是: .

  iii.實(shí)際應(yīng)用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長(zhǎng)度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]

  (四)反饋訓(xùn)練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點(diǎn)a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(diǎn)(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點(diǎn) 的切線方程.

高中數(shù)學(xué)教案8

  各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

 。ǘ┙虒W(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設(shè)計(jì)

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會(huì)走向會(huì)學(xué),由被動(dòng)答題走向主動(dòng)探究。

 。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個(gè)一次”的關(guān)系

  本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。

  為此,我設(shè)計(jì)了以下幾個(gè)問題:

  1、請(qǐng)同學(xué)們解以下方程和不等式:

 、2x-7=0;②2x-70;③2x-70

  學(xué)生回答,我板書。

  2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。

  3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。

  4、為此,我引入一次函數(shù)y=2x-7,借助動(dòng)畫從圖象上直觀認(rèn)識(shí)方程和不等式的解,得出以下三組重要關(guān)系:

 、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸

  交點(diǎn)的`橫坐標(biāo)。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。

 、2x-70的解集正是函數(shù)y=2x-7的圖象

  在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。

  三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時(shí),學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。

 。ǘ┍扰f悟新,引出“三個(gè)二次”的關(guān)系

  為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。

  看函數(shù)y=x2-x-6的圖象并說出:

 、俜匠蘹2-x-6=0的解是

  x=-2或x=3 ;

  ②不等式x2-x-60的解集是

  {x|x-2,或x3};

 、鄄坏仁絰2-x-60的解集是

  {x|-23}。

  此時(shí),學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。

  學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時(shí),圖象與x軸有兩個(gè)交點(diǎn);△=0時(shí),圖象與x軸只有一個(gè)交點(diǎn);△0時(shí),圖象與x輛沒有交點(diǎn)。)請(qǐng)同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?

  (三)歸納提煉,得出“三個(gè)二次”的關(guān)系

  1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對(duì)位置關(guān)系,寫出相關(guān)不等式的解集。

  2、此時(shí)提出:若a0時(shí),怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)

 。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集

  借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識(shí),為鞏固所學(xué)知識(shí),我們一起來完成以下例題:

  例1、解不等式2x2-3x-20

  解:因?yàn)棣?,方程2x2-3x-2=0的解是

  x1= ,x2=2

  所以,不等式的解集是

  { x| x ,或x2}

  例1的解決達(dá)到了兩個(gè)目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。

  下面我們接著學(xué)習(xí)課本例2。

  例2 解不等式-3x2+6x2

  課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對(duì)于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對(duì)此例的解答極易出現(xiàn)寫錯(cuò)解集(如出現(xiàn)“或”與“且”的錯(cuò)誤)。

  通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

  例3 解不等式4x2-4x+10

  例4 解不等式-x2+2x-30

  分別突出了“△=0”、“△0”對(duì)不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評(píng)學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。

  4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。

 。ㄎ澹┛偨Y(jié)

  解一元二次不等式的“四部曲”:

  (1)把二次項(xiàng)的系數(shù)化為正數(shù)

  (2)計(jì)算判別式Δ

  (3)解對(duì)應(yīng)的一元二次方程

  (4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

 。┳鳂I(yè)布置

  為了使所有學(xué)生鞏固所學(xué)知識(shí),我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。

 。1)必做題:習(xí)題1.5的1、3題

 。2)探究題:①若a、b不同時(shí)為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。

 。ㄆ撸┌鍟O(shè)計(jì)

  一元二次不等式解法(1)

  五、教學(xué)效果評(píng)價(jià)

  本節(jié)課立足課本,著力挖掘,設(shè)計(jì)合理,層次分明。以“三個(gè)一次關(guān)系→三個(gè)二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識(shí)形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。

高中數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  【知識(shí)與技能】

  在掌握?qǐng)A的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的`條件。

  【過程與方法】

  通過對(duì)方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實(shí)際能力得到提高。

  【情感態(tài)度與價(jià)值觀】

  滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵(lì)學(xué)生創(chuàng)新,勇于探索。

  二、教學(xué)重難點(diǎn)

  【重點(diǎn)】

  掌握?qǐng)A的一般方程,以及用待定系數(shù)法求圓的一般方程。

  【難點(diǎn)】

  二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

  三、教學(xué)過程

  (一)復(fù)習(xí)舊知,引出課題

  1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

  2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案10

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  解三角形及應(yīng)用舉例

  教學(xué)重難點(diǎn)

  解三角形及應(yīng)用舉例

  教學(xué)過程

  一.基礎(chǔ)知識(shí)精講

  掌握三角形有關(guān)的定理

  利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

  利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.

  二.問題討論

  思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論.

  思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).

  例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)

  風(fēng)中心位于城市O(如圖)的東偏南方向

  300km的海面P處,并以20km/h的速度向西偏北的.

  方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,

  并以10km/h的速度不斷增加,問幾小時(shí)后該城市開始受到

  臺(tái)風(fēng)的侵襲。

  一.小結(jié):

  1.利用正弦定理,可以解決以下兩類問題:

  (1)已知兩角和任一邊,求其他兩邊和一角;

  (2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

  2。利用余弦定理,可以解決以下兩類問題:

  (1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3.邊角互化是解三角形問題常用的手段.

  三.作業(yè):P80闖關(guān)訓(xùn)練

高中數(shù)學(xué)教案11

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):熟練運(yùn)用定理.

  教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化.

  教學(xué)過程

  一、復(fù)習(xí)準(zhǔn)備:

  1.寫出正弦定理、余弦定理及推論等公式.

  2.討論各公式所求解的三角形類型.

  二、講授新課:

  1.教學(xué)三角形的解的討論:

  ①出示例1:在△ABC中,已知下列條件,解三角形.

  分兩組練習(xí)→討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?

 、谟萌缦聢D示分析解的情況.(A為銳角時(shí))

  ②練習(xí):在△ABC中,已知下列條件,判斷三角形的解的情況.

  2.教學(xué)正弦定理與余弦定理的.活用:

  ①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦.

  分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角.

 、诔鍪纠3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

  分析:由三角形的什么知識(shí)可以判別?→求最大角余弦,由符號(hào)進(jìn)行判斷

  ③出示例4:已知△ABC中,,試判斷△ABC的形狀.

  分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?

  3.小結(jié):三角形解的情況的討論;判斷三角形類型;邊角關(guān)系如何互化.

  三、鞏固練習(xí):

  3.作業(yè):教材P11B組1、2題.

高中數(shù)學(xué)教案12

  1. 幽默風(fēng)趣的你,平時(shí)在班里話語不多,也不張揚(yáng),但是,你在無意中的表現(xiàn)仍然贏得了很好的人際關(guān)系,學(xué)習(xí)上你認(rèn)真刻苦,也能及時(shí)的完成作業(yè),但是我覺得你總是沒把全部的心思用在學(xué)習(xí)上,不然以你的聰明,應(yīng)該保持在前三名才對(duì)啊,加油吧,也許關(guān)注學(xué)習(xí)成績(jī)對(duì)你才是更有意義的事!

  2. 身為紀(jì)律委員的你,認(rèn)真負(fù)責(zé),以身作則,生活上的你平易近人,與同學(xué)關(guān)系融洽,學(xué)習(xí)上你勤奮刻苦,尤其在英語的學(xué)習(xí)上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學(xué)科學(xué)習(xí)中,也一定會(huì)收獲很多的!加油吧!

  3. 你能嚴(yán)格遵守校規(guī),上課認(rèn)真聽講,作業(yè)完成認(rèn)真,樂于助人,愿意幫助同學(xué),大掃除時(shí)你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點(diǎn),定會(huì)取得更好的結(jié)果,而且你還是一個(gè)愿意動(dòng)腦筋的好學(xué)生,如果繼續(xù)保持下去定會(huì)取得驕人的成績(jī)!

  4. 你是個(gè)懂禮貌明事理的孩子,你能嚴(yán)格遵守班級(jí)紀(jì)律,熱愛集體,對(duì)待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認(rèn)真完成作業(yè)。你的學(xué)習(xí)方法有待改進(jìn),若能做到學(xué)習(xí)時(shí)心無旁騖就好了,掌握知識(shí)也不夠牢固,思維能力要進(jìn)一步培養(yǎng)和提高,平時(shí)善于多動(dòng)筆認(rèn)真作好筆記,多開動(dòng)腦筋,相信你一定能在下學(xué)期更得更大的進(jìn)步! 你學(xué)習(xí)認(rèn)真刻苦,也能善于思考,更十分活潑,并能嚴(yán)格遵守班級(jí)和宿舍紀(jì)律,上課你能認(rèn)真聽講,做作業(yè)時(shí)你十分專注,常常愿意花功夫鉆研難題,與同學(xué)相處也十分融洽,但若能在認(rèn)真做作業(yè)的同時(shí),將速度提上去,我相信你會(huì)做得更好。要多講究學(xué)習(xí)方法,不能靠熬夜來完成學(xué)習(xí)任務(wù),提高學(xué)習(xí)效率,老師相信你一定能通過自己的努力取得更好的成績(jī)!

  5. 雖然你個(gè)頭小,但每次你領(lǐng)讀時(shí)的那股認(rèn)真勁兒,令老師暗暗稱贊。你尊敬老師,和同學(xué)能和睦相處。甜美可愛的你,經(jīng)過不斷的努力,你會(huì)更出色的!

  6. 你是個(gè)活潑可愛的孩子,課堂上,你非常投入地學(xué)習(xí)著,朗讀課文時(shí)數(shù)你最有感情。中午你還主動(dòng)給老師捶背,真是個(gè)會(huì)關(guān)心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

  7. 學(xué)習(xí)中你能嚴(yán)格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學(xué)習(xí)方法,抓緊一切時(shí)間,笑在最后的一定是你!

  8. 許麗君——你思想上進(jìn),踏實(shí)穩(wěn)重,誠(chéng)實(shí)謙虛,尊敬老師。黑板報(bào)中有你傾注的心血,集體榮譽(yù)簿里有你的功勞。但學(xué)習(xí)的主動(dòng)精神不夠,競(jìng)爭(zhēng)意識(shí)不強(qiáng),也很少看到你向老師請(qǐng)教,成績(jī)進(jìn)步不明顯。請(qǐng)相信:世上沒有比腳更長(zhǎng)的路,也沒有比心更高的`山!望今后大膽進(jìn)取,多思多問,發(fā)揮你的聰明才智,進(jìn)一步激發(fā)活力,提高學(xué)習(xí)效率,持之以恒,美好的明天屬于你!

  9. 每天你都背著書包高高興興地來上學(xué),學(xué)到了不少的知識(shí),可惜只能記住很少的一部分。希望你改進(jìn)學(xué)習(xí)方法,提高學(xué)習(xí)效率,在下學(xué)期有更大的進(jìn)步!

  10. 你言語不多,但待人誠(chéng)懇、禮貌,作風(fēng)踏實(shí),品學(xué)兼優(yōu),熱愛班級(jí),關(guān)愛同學(xué),勤奮好學(xué),思維敏捷,成績(jī)優(yōu)秀。愿你扎實(shí)各科基礎(chǔ),堅(jiān)持不懈,!一定能考上重點(diǎn)! 優(yōu)秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優(yōu)秀,把這種優(yōu)秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

高中數(shù)學(xué)教案13

  一、教材分析

  1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個(gè)空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(cè)(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究?jī)蓚(gè)平面的垂直而提出的一個(gè)概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對(duì)學(xué)生系統(tǒng)地掌握直線和平面的知識(shí)乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。

  2、教學(xué)目標(biāo):

  知識(shí)目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。

  (2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。

  能力目標(biāo):(1)突出對(duì)類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對(duì)圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動(dòng)手操作能力。

  德育目標(biāo):(1)使學(xué)生認(rèn)識(shí)到數(shù)學(xué)知識(shí)來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。

  情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),拉近學(xué)生之間、師生之間的情感距離。

  3、重點(diǎn)、難點(diǎn):

  重點(diǎn):“二面角”和“二面角的平面角”的概念

  難點(diǎn):“二面角的平面角”概念的形成過程

  二、教法分析

  1、教學(xué)方法:在引入課題時(shí),我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動(dòng)探究和類比發(fā)現(xiàn)法,在形成技能時(shí)以訓(xùn)練法、探究研討法為主。

 。、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計(jì)學(xué)生對(duì)二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計(jì)二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。

  3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。

  三、學(xué)法指導(dǎo)

  1、樂學(xué):在整個(gè)學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識(shí),全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。

  2、學(xué)會(huì):在掌握基礎(chǔ)知識(shí)的同時(shí),學(xué)生要注意領(lǐng)會(huì)化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會(huì)建立完善的認(rèn)知結(jié)構(gòu)。

  3、會(huì)學(xué):通過自己親身參與,學(xué)生要領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法,從而既學(xué)到知識(shí),又學(xué)會(huì)創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。

  四、教學(xué)過程

  心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時(shí),就會(huì)對(duì)概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識(shí),營(yíng)造了創(chuàng)新思維的氛圍。

  (一)、二面角

  1、揭示概念產(chǎn)生背景。

  問題情境1、在平面幾何中“角”是怎樣定義的?

  問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?

  問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。

  通過這三個(gè)問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識(shí)的創(chuàng)新做好了準(zhǔn)備;同時(shí)也讓學(xué)生領(lǐng)會(huì)到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。

  問題情境4、那么,應(yīng)該如何定義二面角呢?

  創(chuàng)設(shè)這個(gè)問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對(duì)于學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新結(jié)果,教師要給與積極的評(píng)價(jià)。

  問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。

 。ǘ、二面角的平面角

  1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個(gè)旋轉(zhuǎn)量,同樣一個(gè)二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個(gè)旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面

  與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。

  問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。

  2、展現(xiàn)概念形成過程

 。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對(duì)象。

  問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。

  問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個(gè)角是唯一確定的.。

  問題情境9、這個(gè)平面的角的頂點(diǎn)及兩邊是如何確定的?

 。2)、提出猜想:二面角的大小也可通過平面的角來定義。對(duì)學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識(shí)和習(xí)慣,這對(duì)強(qiáng)化他們的創(chuàng)新意識(shí)大有幫助。

  問題情境10、那么,這個(gè)角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個(gè)面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。

 。3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動(dòng)手操作能力。

  (4)、繼續(xù)探索,得到定義。

  問題情境11、那么,怎樣使這個(gè)角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。

  (5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。

 。ㄈ、二面角及其平面角的畫法

  主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

 。ㄋ模、范例分析

  為鞏固學(xué)生所學(xué)知識(shí),由于時(shí)間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會(huì)到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識(shí)。

  例:一張邊長(zhǎng)為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個(gè)1200二面角,求此時(shí)B、c兩點(diǎn)間的距離。

  分析:涉及二面角的計(jì)算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動(dòng)學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會(huì)。教師講評(píng)時(shí)強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。

  變式訓(xùn)練:圖中共有幾個(gè)二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。

  題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

 。2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

  (五)、練習(xí)、小結(jié)與作業(yè)

  練習(xí):習(xí)題9.7的第3題

  小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對(duì)空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時(shí)要求學(xué)生對(duì)本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會(huì)復(fù)習(xí)類比和深入研究這兩種知識(shí)創(chuàng)新的方法。

  作業(yè):習(xí)題9.7的第4題

  思考題:見例題

  五、板書設(shè)計(jì)(見課件)

  以上是我對(duì)《二面角》授課的初步設(shè)想,不足之處,懇請(qǐng)大家批評(píng)指正,謝謝!

高中數(shù)學(xué)教案14

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點(diǎn)處的切線的概念;

  2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

  問題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點(diǎn):

  理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點(diǎn):

  用“無限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。

  教學(xué)過程:

  一、問題情境

  1、問題情境。

  如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢(shì)呢?

  如果將點(diǎn)P附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。

  如果將點(diǎn)P附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。

  因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動(dòng)。

  如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,

  (1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;

 。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動(dòng),割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無限逼近點(diǎn)P時(shí),直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  三、數(shù)學(xué)運(yùn)用

  例1 試求在點(diǎn)(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的'斜率為:

  當(dāng)Q沿曲線逼近點(diǎn)P時(shí),割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點(diǎn)橫坐標(biāo)無限趨近于P點(diǎn)橫坐標(biāo)時(shí),即xQ無限趨近于2時(shí),kPQ無限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時(shí),kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時(shí),kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:

 。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動(dòng)點(diǎn)Q的坐標(biāo);

  (2)求出割線PQ的斜率;

 。3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?

  解 設(shè)

  所以,當(dāng)無限趨近于0時(shí),無限趨近于點(diǎn)處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學(xué)教案15

  【教學(xué)目標(biāo)】

  1.會(huì)用語言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

  2.能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

  3.提高學(xué)生的觀察能力;培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

  【教學(xué)重難點(diǎn)】

  教學(xué)重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。

  教學(xué)難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

  【教學(xué)過程】

  1.情景導(dǎo)入

  教師提出問題,引導(dǎo)學(xué)生觀察、舉例和相互交流,提出本節(jié)課所學(xué)內(nèi)容,出示課題。

  2.展示目標(biāo)、檢查預(yù)習(xí)

  3、合作探究、交流展示

 。1)引導(dǎo)學(xué)生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

 。2)組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個(gè)面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

 。3)提出問題:請(qǐng)列舉身邊的棱柱并對(duì)它們進(jìn)行分類

  (4)以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

 。5)讓學(xué)生觀察圓柱,并實(shí)物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

  (6)引導(dǎo)學(xué)生以類似的.方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

  (7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

  4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。

 。1)有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

 。2)棱柱的任何兩個(gè)平面都可以作為棱柱的底面嗎?

 。3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

  (4)棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

 。5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

  5、典型例題

  例1:判斷下列語句是否正確。

 、庞幸粋(gè)面是多邊形,其余各面都是三角形的幾何體是棱錐。

 、朴袃蓚(gè)面互相平行,其余各面都是梯形,則此幾何體是棱柱。

  答案 A B

  6、課堂檢測(cè):

  課本P8,習(xí)題1.1 A組第1題。

  7.歸納整理

  由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容

  【板書設(shè)計(jì)】

  一、柱、錐、臺(tái)、球的結(jié)構(gòu)

  二、例題

  例1

  變式1、2

  【作業(yè)布置】

  導(dǎo)學(xué)案課后練習(xí)與提高

  1.1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  課前預(yù)習(xí)學(xué)案

  一、預(yù)習(xí)目標(biāo):

  通過圖形探究柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  二、預(yù)習(xí)內(nèi)容:

  閱讀教材第2—6頁內(nèi)容,然后填空

 。1)多面體的概念: 叫多面體,

  叫多面體的面, 叫多面體的棱,

  叫多面體的頂點(diǎn)。

 、 棱柱:兩個(gè)面 ,其余各面都是 ,并且每相鄰兩個(gè)四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

  ②棱錐:有一個(gè)面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

 、劾馀_(tái):用一個(gè) 棱錐底面的平面去截棱錐, ,叫作棱臺(tái)。

 。2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

  ①圓柱: 所圍成的幾何體叫做圓柱

 、趫A錐: 所圍成的幾何

  體叫做圓錐

  ③圓臺(tái): 的部分叫圓臺(tái)

  . ④球的定義

  思考:

 。1)試分析多面體與旋轉(zhuǎn)體有何去別

  (2)球面球體有何去別

 。3)圓與球有何去別

  三、提出疑惑

  同學(xué)們,通過你的自主學(xué)習(xí),你還有哪些疑惑,請(qǐng)把它填在下面的表格中

  疑惑點(diǎn) 疑惑內(nèi)容

【高中數(shù)學(xué)教案】相關(guān)文章:

高中必修數(shù)學(xué)教案01-07

高中數(shù)學(xué)教案09-28

高中必修4數(shù)學(xué)教案03-13

高中數(shù)學(xué)教案10-26

高中的數(shù)學(xué)教案(通用19篇)01-06

【推薦】高中數(shù)學(xué)教案11-10

高中數(shù)學(xué)教案【熱門】11-12

高中數(shù)學(xué)教案【精】11-20

高中數(shù)學(xué)教案【熱】11-15

【精】高中數(shù)學(xué)教案11-13