八年級數(shù)學(xué)教案(推薦)
在教學(xué)工作者實際的教學(xué)活動中,有必要進行細致的教案準備工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W(xué)方法。教案要怎么寫呢?下面是小編收集整理的八年級數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對大家有所幫助。
八年級數(shù)學(xué)教案1
一、教學(xué)目的
1.使學(xué)生進一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.
二、教學(xué)重點、難點
重點:1.理解與認識函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.
三、教學(xué)過程
復(fù)習提問
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?
3.說出下列各點所在象限或坐標軸:
新課
1.畫函數(shù)圖象的方法是描點法.其步驟:
(1)列表.要注意適當選取自變量與函數(shù)的.對應(yīng)值.什么叫“適當”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標和縱坐標,這就要把自變量與函數(shù)的對應(yīng)值列出表來.
(2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標,在直角坐標系中描出相應(yīng)的點.
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.
練習
、龠x用課本練習(前一節(jié)已作:列表、描點,本節(jié)要求連線)
、谘a充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習題.
四、教學(xué)注意問題
1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認識函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動學(xué)生自己動手畫圖的積極性.
3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力.
八年級數(shù)學(xué)教案2
第三十四學(xué)時:14.2.1平方差公式
一、學(xué)習目標:
1.經(jīng)歷探索平方差公式的過程。
2.會推導(dǎo)平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導(dǎo)和應(yīng)用;
難點:理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。
三、合作學(xué)習
你能用簡便方法計算下列各題嗎?
。1)20xx×1999(2)998×1002
導(dǎo)入新課:計算下列多項式的`積.
。1)(x+1)(x—1);
。2)(m+2)(m—2)
。3)(2x+1)(2x—1);
。4)(x+5y)(x—5y)。
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
。1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
。3)(—x+2y)(—x—2y)。
例2:計算:
。1)102×98;
。2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
。1)(a+b)(—b+a);
。2)(—a—b)(a—b);
。3)(3a+2b)(3a—2b);
。4)(a5—b2)(a5+b2);
。5)(a+2b+2c)(a+2b—2c);
。6)(a—b)(a+b)(a2+b2)。
五、小結(jié)
(a+b)(a—b)=a2—b2
八年級數(shù)學(xué)教案3
一、教學(xué)目標
1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點的突破方法:
首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。
教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的`步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學(xué)習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
七、課后練習
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級數(shù)學(xué)教案4
教學(xué)目標
1、理解并掌握等腰三角形的判定定理及推論
2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系。
教學(xué)重點:
等腰三角形的判定定理及推論的運用
教學(xué)難點:
正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的.相等關(guān)系。
教學(xué)過程:
一、復(fù)習等腰三角形的性質(zhì)
二、新授:
I提出問題,創(chuàng)設(shè)情境
出示投影片。某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質(zhì)專家測得AC的長度就可知河流寬度。
學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個問題,引導(dǎo)學(xué)生學(xué)習“等腰三角形的判定”。
II引入新課
1、由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?
2、引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證。
3、小結(jié),通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱)。
強調(diào)此定理是在一個三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”。
4、引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù)。
III例題與練習
1、如圖2
其中△ABC是等腰三角形的是[ ]
2、①如圖3,已知△ABC中,AB=AC!螦=36°,則∠C______(根據(jù)什么?)。
、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?)。
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______。
、苋粢阎狝D=4cm,則BC______cm。
3、以問題形式引出推論l______。
4、以問題形式引出推論2______。
例:如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形。
分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明。
練習:
5、(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E。問圖中哪些三角形是等腰三角形?
。2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習:P53練習1、2、3。
IV課堂小結(jié)
1、判定一個三角形是等腰三角形有幾種方法?
2、判定一個三角形是等邊三角形有幾種方法?
3、等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?
4、現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?
V布置作業(yè):P56頁習題12.3第5、6題
八年級數(shù)學(xué)教案5
分式方程
教學(xué)目標
1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.
2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。
3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習的習慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進取心,體會數(shù)學(xué)的`應(yīng)用價值.
教學(xué)重點:
將實際問題中的等量 關(guān)系用分式方程表示
教學(xué)難點:
找實際問題中的等量關(guān)系
教學(xué)過程:
情境導(dǎo)入:
有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)
如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。
根據(jù)題意,可得方程___________________
二、講授新課
從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。
這 一問題中有哪些等量關(guān)系?
如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。
根據(jù)題意,可得方程_ _____________________。
學(xué)生分組探討、交流,列出方程.
三.做一做:
為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?
四.議一議:
上面所得到的方程有什么共同特點?
分母中含有未知數(shù)的方程叫做分式方程
分式方程與整式方程有什么區(qū)別?
五、 隨堂練習
(1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?
(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度
(3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好
六、學(xué) 習小結(jié)
本節(jié)課你學(xué)到了哪些知識?有什么感想?
七.作業(yè)布置
八年級數(shù)學(xué)教案6
一、教學(xué)目標:
1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.
2、會求一組數(shù)據(jù)的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數(shù)據(jù)的極差.
2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據(jù)兩段時間的氣溫情況可繪成的.折線圖.
觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.
用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習已學(xué)知識.問題3答案并不唯一,合理即可。
八年級數(shù)學(xué)教案7
一、教學(xué)內(nèi)容:
本節(jié)內(nèi)容是人教版教材八年級上冊,第十四章第2節(jié)乘法公式的第二課時——完全平方公式。
二、教材分析:
完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學(xué)生學(xué)習整式乘法后,對多項式乘法中出現(xiàn)的一種特殊的算式的總結(jié),體現(xiàn)了從一般到特殊的思想方法。完全平方公式是學(xué)生后續(xù)學(xué)好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學(xué)習一元二次方程、函數(shù)等知識奠定了基礎(chǔ),所以說完全平方公式屬于代數(shù)學(xué)的基礎(chǔ)地位。
本節(jié)課內(nèi)容是在學(xué)生掌握了平方差公式的基礎(chǔ)上,研究完全平方公式的推導(dǎo)和應(yīng)用,公式的發(fā)現(xiàn)與驗證為學(xué)生體驗規(guī)律探索提供了一種較好的模式,培養(yǎng)學(xué)生逐步形成嚴密的邏輯推理能力。完全平方公式的學(xué)習對簡化某些代數(shù)式的'運算,培養(yǎng)學(xué)生的求簡意識很有幫助。使學(xué)生了解到完全平方公式是有力的數(shù)學(xué)工具。
重點:掌握完全平方公式,會運用公式進行簡單的計算。
難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應(yīng)用。
三、教學(xué)目標
(1)經(jīng)歷探索完全平方公式的推導(dǎo)過程,掌握完全平方公式,并能正確運用公式進行簡單計算。
(2)進一步發(fā)展學(xué)生的符號感和推理能力,了解公式的幾何背景,感受數(shù)與形之間的聯(lián)系,學(xué)會獨立思考。
(3)通過推導(dǎo)完全平方公式及分析結(jié)構(gòu)特征,培養(yǎng)學(xué)生觀察、分析、歸納的能力,學(xué)會與他人合作交流,體驗解決問題的多樣性。
(4)體驗完全平方公式可以簡化運算從而激發(fā)學(xué)生的學(xué)習興趣;在自主探究、合作交流的學(xué)習過程中獲得體驗成功的喜悅,增強學(xué)習數(shù)學(xué)的自信心。
四、學(xué)情分析與教法學(xué)法
學(xué)情分析:課程標準提出數(shù)學(xué)教學(xué)活動必須建立在學(xué)生的認知發(fā)展水平和已有的知識經(jīng)驗基礎(chǔ)之上,本節(jié)課就是在前面的學(xué)習中,學(xué)生已經(jīng)掌握了整式的乘法運算及平方差公式的基礎(chǔ)上開展的,具備了初步的總結(jié)歸納能力。另外,14歲的中學(xué)生充滿了好奇心,有較強的求知欲、創(chuàng)造欲、表現(xiàn)欲,所以只有能調(diào)動學(xué)生的學(xué)習熱情,本節(jié)內(nèi)容才較易掌握。但八年級學(xué)生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節(jié)課要注意的問題。
學(xué)法:以自主探究為主要學(xué)習方式,使學(xué)生在獨立思考、歸納總結(jié)、合作交流
總結(jié)反思中獲得數(shù)學(xué)知識與技能。
教法:以啟發(fā)引導(dǎo)式為主要教學(xué)方式,在引導(dǎo)探究、歸納總結(jié)、典例精析、合作交流的教學(xué)過程中,教師做好組織者和引導(dǎo)者,讓學(xué)生在老師的指導(dǎo)下處于主動探究的學(xué)習狀態(tài)。
五、教學(xué)過程
(略)
六、教學(xué)評價
在教學(xué)中,教師在精心設(shè)置教學(xué)環(huán)節(jié)中,做到以學(xué)生為主體,做好組織者和引導(dǎo)者,全面評價學(xué)生在知識技能、數(shù)學(xué)思考、問題解決和情感態(tài)度等方面的表現(xiàn)。教師通過情境引入、提供問題引導(dǎo)學(xué)生從已有的知識為出發(fā)點,自主探究,發(fā)現(xiàn)問題,深入思考。學(xué)生解決問題要以獨立思考為主,當遇到困難時學(xué)會求助交流,教師也要給學(xué)生思考交流的時間,讓學(xué)生經(jīng)歷得出結(jié)論的過程,培養(yǎng)發(fā)現(xiàn)問題解決問題的能力。
在整個學(xué)習過程中,通過對學(xué)生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發(fā)現(xiàn)問題的能力進行評價,并對學(xué)生的想法或結(jié)論給予鼓勵評價。
八年級數(shù)學(xué)教案8
教學(xué)目標
。ㄒ唬┙虒W(xué)知識點
1、等腰三角形的概念、
2、等腰三角形的性質(zhì)、
3、等腰三角形的概念及性質(zhì)的應(yīng)用、
1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對稱的角度去體會等腰三角形的特點、
2、探索并掌握等腰三角形的性質(zhì)、
(三)情感與價值觀要求
通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認真思考的習慣、
教學(xué)重點
1、等腰三角形的概念及性質(zhì)、
2、等腰三角形性質(zhì)的應(yīng)用、
教學(xué)難點
等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、
教學(xué)方法
探究歸納法、
教具準備
師:多媒體課件、投影儀;
生:硬紙、剪刀、
教學(xué)過程
1、提出問題,創(chuàng)設(shè)情境
。◣煟┰谇懊娴膶W(xué)習中,我們認識了軸對稱圖形,探究了軸對稱的性質(zhì),并且能夠作出一個簡單平面圖形關(guān)于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設(shè)計一些美麗的圖案、這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形、來研究:
、偃切问禽S對稱圖形嗎?
、谑裁礃拥娜切问禽S對稱圖形?
。ㄉ┯械娜切问禽S對稱圖形,有的三角形不是。
。◣煟┠鞘裁礃拥娜切问禽S對稱圖形?
。ㄉM足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形。
。◣煟┖芎,我們這節(jié)課就來認識一種成軸對稱圖形的三角形──等腰三角形。
2、導(dǎo)入新課
(師)同學(xué)們通過自己的思考來做一個等腰三角形。作一條直線L,在L上取點A,在L外取點B,作出點B關(guān)于直線L的對稱點C,連結(jié)AB、BC、CA,則可得到一個等腰三角形。
(生乙)在甲同學(xué)的做法中,A點可以取直線L上的任意一點。
。◣煟⿲,按這種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準備的硬紙和剪刀,按自己設(shè)計的方法,也可以用課本P138探究中的方法,剪出一個等腰三角形。
。◣煟┌凑瘴覀兊淖龇ǎ梢缘玫降妊切蔚亩x:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角。
。◣煟┯辛松鲜龈拍,同學(xué)們來想一想。
。ㄑ菔菊n件)
1、等腰三角形是軸對稱圖形嗎?請找出它的對稱軸。
2、等腰三角形的.兩底角有什么關(guān)系?
3、頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4、底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
(生甲)等腰三角形是軸對稱圖形、它的對稱軸是頂角的平分線所在的直線、因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線。
(師)同學(xué)們把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關(guān)系。
。ㄉ遥┪野炎约鹤龅牡妊切握郫B后,發(fā)現(xiàn)等腰三角形的兩個底角相等。
。ㄉ┪野训妊切握郫B,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗證等腰三角形的對稱軸是頂角的平分線所在的直線。
(生。┪野训妊切窝氐走吷系闹芯對折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對稱軸。
。ㄉ欤├蠋,我發(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對稱軸。
。◣煟┠銈冋f的是同一條直線嗎?大家來動手折疊、觀察。
。ㄉR聲)它們是同一條直線。
。◣煟┖芎、現(xiàn)在同學(xué)們來歸納等腰三角形的性質(zhì)。。
。ㄉ┪已氐妊切蔚捻斀堑钠椒志對折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。
。◣煟┖芎茫蠹铱雌聊。
。ㄑ菔菊n件)
等腰三角形的性質(zhì):
1、等腰三角形的兩個底角相等(簡寫成“等邊對等角”)
2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、
。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動手來寫出這些證明過程)
。ㄍ队皟x演示學(xué)生證明過程)
。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因為
所以BAD≌CAD(SSS)、
所以∠B=∠C、
(生乙)如右圖,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以BAD≌CAD、
所以BD=CD,∠BDA=∠CDA=∠BDC=90°。
(師)很好,甲、乙兩同學(xué)給出了等腰三角形兩個性質(zhì)的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。
。ㄑ菔菊n件)
。ɡ1)如圖,在ABC中,AB=AC,點D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、
(師)同學(xué)們先思考一下,我們再來分析這個題、
。ㄉ└鶕(jù)等邊對等角的性質(zhì),我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個內(nèi)角。
。◣煟┻@位同學(xué)分析得很好,對我們以前學(xué)過的定理也很熟悉、如果我們在解的過程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷。
。ㄕn件演示)
(例)因為AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對等角)、
設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、
于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。
在ABC中,∠A=35°,∠ABC=∠C=72°、
(師)下面我們通過練習來鞏固這節(jié)課所學(xué)的知識、
3、隨堂練習
。ㄒ唬┱n本P141練習1、2、3。
練習
1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、
答案:(1)72°(2)30°
2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?
答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、
3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、
答:∠B=77°,∠C=38、5°、
(二)閱讀課本P138~P140,然后小結(jié)、
4、課時小結(jié)
這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對性質(zhì)作了簡單的應(yīng)用、等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、
我們通過這節(jié)課的學(xué)習,首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、
5、課后作業(yè)
。ㄒ唬┱n本P147─1、3、4、8題、
。ǘ1、預(yù)習課本P141~P143、
2、預(yù)習提綱:等腰三角形的判定、
6、活動與探究
如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、
求證:AE=CE、
過程:通過分析、討論,讓學(xué)生進一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、
結(jié)果:
證明:延長CD交AB的延長線于P,如右圖,在ADP和ADC中
ADP≌ADC、
∠P=∠ACD、
又DE∥AP,
∠4=∠P、
∠4=∠ACD、
DE=EC、
同理可證:AE=DE、
AE=CE、
板書設(shè)計
八年級數(shù)學(xué)教案9
【教學(xué)目標】
知識目標:
解單項式乘以多項式的意義,理解單項式與多項式的乘法法則,會進行單項式與多項式的乘法運算。
能力目標:
。1)經(jīng)歷探索乘法運算法則的過程,發(fā)展觀察、歸納、猜測、驗證等能力;
。2)體會乘法分配律的作用與轉(zhuǎn)化思想,發(fā)展有條理的思考及語言表達能力。
情感目標:
充分調(diào)動學(xué)生學(xué)習的積極性、主動性
【教學(xué)重點】
單項式與多項式的乘法運算
【教學(xué)難點】
推測整式乘法的`運算法則。
【教學(xué)過程】
一、復(fù)習引入
通過對已學(xué)知識的復(fù)習引入課題(學(xué)生作答)
1.請說出單項式與單項式相乘的法則:
單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,對于只在一個單項式里出現(xiàn)的字母,則連同它的指數(shù)作為積的一個因式。
。ㄏ禂(shù)×系數(shù))×(同字母冪相乘)×單獨的冪
例如:( 2a2b3c) (-3ab)
解:原式=[2· (-3) ] · (a2·a) · (b3 · b) · c
= -6a3b4c
2.說出多項式2x2-3x-1的項和各項的系數(shù)項分別為:2x2、-3x、-1系數(shù)分別為:2、-3、-1
問:如何計算單項式與多項式相乘?例如:2a2· (3a2 - 5b)該怎樣計算?
這便是我們今天要研究的問題。
二、新知探究
已知一長方形長為(a+b+c),寬為m,則面積為:m(a+b+c)
現(xiàn)將這個長方形分割為寬為m,長分別為a、b、c的三個小長方形,其面積之和為ma+mb+mc因為分割前后長方形沒變所以m(a+b+c)=ma+mb+mc
上一等式根據(jù)什么規(guī)律可以得到?從中可以得出單項式與多項式相乘的運算法則該如何表述?(學(xué)生分組討論:前后座為一組;找個別同學(xué)作答,教師作評)
結(jié)論單項式與多項式相乘的運算法則:
用單項式分別去乘多項式的每一項,再把所得的積相加。
用字母表示為:m(a+b+c)=ma+mb+mc
運算思路:單×多
轉(zhuǎn)化
分配律
單×單
三、例題講解
例計算:(1)(-2a2)· (3ab2– 5ab3)
(2)(- 4x) ·(2x2+3x-1)
解:(1)原式= (-2a2)· 3ab2+ (-2a2)·(– 5ab3) ①=-6a3b2+ 10a3b3 ②
(2)原式=(- 4x) ·2x2+(- 4x) ·3x+(- 4x) ·(-1) ①
八年級數(shù)學(xué)教案10
平方差公式
學(xué)習目標:
1、能推導(dǎo)平方差公式,并會用幾何圖形解釋公式;
2、能用平方差公式進行熟練地計算;
3、經(jīng)歷探索平方差公式的推導(dǎo)過程,發(fā)展符號感,體會特殊一般特殊的認識規(guī)律.
學(xué)習重難點:
重點:能用平方差公式進行熟練地計算;
難點:探索平方差公式,并用幾何圖形解釋公式.
學(xué)習過程:
一、自主探索
1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、觀察以上算式及其運算結(jié)果,你發(fā)現(xiàn)了什么規(guī)律?再舉兩例驗證你的發(fā)現(xiàn).
3、你能用自己的語言敘述你的發(fā)現(xiàn)嗎?
4、平方差公式的特征:
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數(shù)的和與差;蛘哒f兩 個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數(shù),也可以換成一個代數(shù)式。
二 、試一試
例1、利用平方差公式計算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式計算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如圖,邊長為a的大正方形中有一個邊長為b的小正方形.
(1)請表示圖中陰影部分的.面積.
(2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b
(3)比較(1)(2)的結(jié)果,你能驗證平方差公式嗎?
四、鞏固練習
1、利用平方差公式計算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式計算
(1)803797 (2)398402
3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是數(shù) B.只能是單項式 C.只能是多項式 D.以上都可以
4.下列多項式的乘法中,可以用平方差公式計算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5.下列計算中,錯誤的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
、(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網(wǎng)WWW.ZK5U.COM]
6.若x2-y2=30,且x-y=-5,則x+y的值是( )
A.5 B.6 C.-6 D.-5
7.(-2x+y)(-2x-y)=______.
8.(-3x2+2y2)(______)=9x4-4y4.
9.(a+b-1)(a-b+1)=(_____)2-(_____)2.
10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.
11.利用平方差公式計算:20 19 .
12.計算:(a+2)(a2+4)(a4+16)(a-2).
五、學(xué)習反思
我的收獲:
我的疑惑:
六、當堂測試
1、下列多項式乘法中能用平方差公式計算的是( ).
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、計算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4.利用平方差公式計算
①1003997 ②14 15
七、課外拓展
下列各式哪些能用平方差公式計算?怎樣用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)
八年級數(shù)學(xué)教案11
教學(xué)目標:
知識目標:
1、初步掌握函數(shù)概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個變量間的關(guān)系式,給定其中一個量,相應(yīng)地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數(shù)學(xué)問題。
能力目標:
1、通過函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
2、經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
情感目標:
1、經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
2、讓學(xué)生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習模式。
教學(xué)重點:
掌握函數(shù)概念。
判斷兩個變量之間的關(guān)系是否可看作函數(shù)。
能把實際問題抽象概括為函數(shù)問題。
教學(xué)難點:
理解函數(shù)的概念。
能把實際問題抽象概括為函數(shù)問題。
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)問題情境,導(dǎo)入新課
『師』:同學(xué)們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規(guī)律呢?
『生』:應(yīng)該有規(guī)律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復(fù)依次,即轉(zhuǎn)動一圈高度就重復(fù)一次。
『師』:分析有道理。摩天輪上一點的`高度h與旋轉(zhuǎn)時間t之間有一定的關(guān)系。請看下圖,反映了旋轉(zhuǎn)時間t(分)與摩天輪上一點的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應(yīng)的高度h。下面根據(jù)圖5-1進行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應(yīng)的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長度與所掛物體的質(zhì)量,路程的距離與所用時間……了解這些關(guān)系,可以幫助我們更好地認識世界。下面我們就去研究一些有關(guān)變量的問題。
二、新課學(xué)習
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的總數(shù)是如何變化的?
填寫下表:
層數(shù)n 1 2 3 4 5 … 物體總數(shù)y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經(jīng)驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當fenbie為50,60,100時,相應(yīng)的滑行距離S是多少?
、诮o定一個V值,你能求出相應(yīng)的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關(guān)系;第二個問題中是以表格的形式表示兩個變量間的關(guān)系;第三個問題是以關(guān)系式來表示兩個變量間的關(guān)系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應(yīng)地就確定了另一個變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習
書P152頁 隨堂練習1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個變量間的關(guān)系是否可看作函數(shù)。
在一個函數(shù)關(guān)系式中,能識別自變量與因變量,給定自變量的值,相應(yīng)地會求出函數(shù)的值。
函數(shù)的三種表達式:
圖象;(2)表格;(3)關(guān)系式。
五、探究活動
為了加強公民的節(jié)水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應(yīng)交水費y元,請用方程的知識來求有關(guān)x和y的關(guān)系式,并判斷其中一個變量是否為另一個變量的函數(shù)?
。ù鸢福篩=1.8x-6或)
六、課后作業(yè)
習題6.1
八年級數(shù)學(xué)教案12
學(xué)習目標
1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關(guān)系并能找出變化規(guī)律。
2、由坐標的變化探索新舊圖形之間的變化。
重點
1、 作某一圖形關(guān)于對稱軸的對稱圖形,并能寫出所得圖形相應(yīng)各點的坐標。
2、 根據(jù)軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。
難點
體會極坐標和直角坐標思想,并能解決一些簡單的問題
學(xué)習過程(導(dǎo)入、探究新知、即時練習、小結(jié)、達標檢測、作業(yè))
第一課時
學(xué)習過程:
一、舊知回顧:
1、平面直角坐標系定義:在平面內(nèi),兩條____________且有公共_________的數(shù)軸組成平面直角坐標系。
2、坐標平面內(nèi)點的.坐標的表示方法____________。
3、各象限點的坐標的特征:
二、新知檢索:
1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2), (0,0)并用線段依次連接,觀察形成了什么圖形
三、典例分析
例1、
(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?
例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變?yōu)樵瓉淼?倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?
(2)將魚的頂點的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?
四、題組訓(xùn)練
1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。
(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?
(2)縱、橫分別加3呢?
(3)縱、橫分別變成原來的2倍呢?
歸納:圖形坐標變化規(guī)律
1、 平移規(guī)律:2、圖形伸長與壓縮:
第二課時
一、舊知回顧:
1、軸對稱圖形定義:如果一個圖形沿著 對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。
中心對稱圖形定義:在同一平面內(nèi),如果把一個圖形繞某一點旋轉(zhuǎn) ,旋轉(zhuǎn)后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形
二、新知檢索:
1、如圖,左邊的魚與右邊的魚關(guān)于y軸對稱。
1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?
2、各個對應(yīng)頂點的坐標有怎樣的關(guān)系?
3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關(guān)于y軸對稱,那么左邊的魚各個頂點的坐標將發(fā)生怎樣的變化?
三、典例分析,如圖所示,
1、右圖的魚是通過什么樣的變換得到 左圖的魚的。
2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變?yōu)樵瓉淼?倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關(guān)系。
3、如果將右邊的魚的縱、橫坐標都分別變?yōu)樵瓉淼?倍,得到的魚與原來的魚有什么樣的位置關(guān)系
四、題組練習
1、將坐標作如下變化時,圖形將怎樣變化?
、 (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)
④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)
2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。
3、 如圖,作字母M關(guān)于y軸的軸對稱圖形,并寫出所得圖形相應(yīng)各端點的坐標。
4、 描出下圖中楓葉圖案關(guān)于x軸的軸對稱圖形的簡圖。
學(xué)習筆記
八年級數(shù)學(xué)教案13
課題:一元二次方程實數(shù)根錯例剖析課
【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
【課前練習】
1、關(guān)于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數(shù)根,當△_______時,方程有兩個不相等的實數(shù)根,當△________時,方程沒有實數(shù)根。
【典型例題】
例1 下列方程中兩實數(shù)根之和為2的方程是()
(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0
錯答: B
正解: C
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實數(shù)根,故由△可知,方程B無實數(shù)根,方程C合適。
例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實數(shù)根之和大于-4,則k的取值范圍是( )
(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0
錯解 :B
正解:D
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2
錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變?yōu)橐淮畏匠,不可能有兩個實根。
正解: -1≤k<2且k≠
例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當x12+x22=15時,求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1), x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
。2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4 m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數(shù)根,不符合題意。
正解:m = 2
例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴ m≠±1
∴ m的取值范圍是m≠±1且m≥ -
錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠,仍有實?shù)根。
正解:m的取值范圍是m≥-
例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
錯因剖析:概念模糊。非負整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3
【練習】
練習1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。
。1)求k的取值范圍;
。2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<
∴當k< 時,方程有兩個不相等的實數(shù)根。
。2)存在。
如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。
∴當k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
。1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數(shù)根。
。2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)
練習2(02廣州市)當a取什么值時,關(guān)于未知數(shù)x的`方程ax2+4x-1=0只有正實數(shù)根 ?
解:(1)當a=0時,方程為4x-1=0,∴x=
。2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4
∴當a≥ -4且a≠0時,方程有實數(shù)根。
又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0 解得 :a<0
綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數(shù)根。
【小結(jié)】
以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。
1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。
2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業(yè)】
1、當m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。
求證:關(guān)于x的方程
。╩-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。
考題匯編
1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
。2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。
3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
八年級數(shù)學(xué)教案14
八年級下數(shù)學(xué)教案-變量與函數(shù)(2)
一、教學(xué)目的
1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。
2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。
3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學(xué)生進一步理解函數(shù)概念。
二、教學(xué)重點、難點
重點:函數(shù)自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學(xué)過程
復(fù)習提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?
2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?
。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质剑帜浮0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
。ù穑焊笖(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結(jié)合同學(xué)舉出的實例說明解析法的'意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結(jié)合同學(xué)舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:
。1)例3中的4個小題歸納起來仍是三類題型。
。2)求函數(shù)值的問題實際是求代數(shù)式值的問題。
補充例題
求下列函數(shù)當x=3時的函數(shù)值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結(jié)
1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
。1)要使函數(shù)的解析式有意義。
、俸瘮(shù)的解析式是整式時,自變量可取全體實數(shù);
、诤瘮(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;
、酆瘮(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。
(2)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習:P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學(xué)注意問題
1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。
2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級數(shù)學(xué)教案15
第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理
1、探究活動一
內(nèi)容:投影顯示如下地板磚示意圖,引導(dǎo)學(xué)生從面積角度觀察圖形:
問:你能發(fā)現(xiàn)各圖中三個正方形的面積之間有何關(guān)系嗎?
學(xué)生通過觀察,歸納發(fā)現(xiàn):
結(jié)論1以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:從觀察實際生活中常見的地板磚入手,讓學(xué)生感受到數(shù)學(xué)就在我們身邊。通過對特殊情形的探究得到結(jié)論1,為探究活動二作鋪墊。
效果:1.探究活動一讓學(xué)生獨立觀察,自主探究,培養(yǎng)獨立思考的習慣和能力;
2.通過探索發(fā)現(xiàn),讓學(xué)生得到成功體驗,激發(fā)進一步探究的`熱情和愿望。
2、探究活動二
內(nèi)容:由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?
(1)觀察下面兩幅圖:
。2)填表:
A的面積
(單位面積)B的面積
。▎挝幻娣e)C的面積
(單位面積)
左圖
右圖
。3)你是怎樣得到正方形C的面積的?與同伴交流(學(xué)生可能會做出多種方法,教師應(yīng)給予充分肯定)。
學(xué)生的方法可能有:
方法一:
如圖1,將正方形C分割為四個全等的直角三角形和一個小正方形。
方法二:
如圖2,在正方形C外補四個全等的直角三角形,形成大正方形,用大正方形的面積減去四個直角三角形的面積。
方法三:
如圖3,正方形C中除去中間5個小正方形外,將周圍部分適當拼接可成為正方形,如圖3中兩塊紅色(或兩塊綠色)部分可拼成一個小正方形,按此拼法。
。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?
學(xué)生通過分析數(shù)據(jù),歸納出:
結(jié)論2以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。
意圖:探究活動二意在讓學(xué)生通過觀察、計算、探討、歸納進一步發(fā)現(xiàn)一般直角三角形的性質(zhì)。由于正方形C的面積計算是一個難點,為此設(shè)計了一個交流環(huán)節(jié)。
效果:學(xué)生通過充分討論探究,在突破正方形C的面積計算這一難點后得出結(jié)論2.
3、議一議
內(nèi)容:(1)你能用直角三角形的邊長,來表示上圖中正方形的面積嗎?
(2)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?
(3)分別以5厘米、12厘米為直角邊作出一個直角三角形,并測量斜邊的長度。2中發(fā)現(xiàn)的規(guī)律對這個三角形仍然成立嗎?
勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。如果用,分別表示直角三角形的兩直角邊和斜邊,那么。
數(shù)學(xué)小史:勾股定理是我國最早發(fā)現(xiàn)的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名(在西方文獻中又稱為畢達哥拉斯定理)。
意圖:議一議意在讓學(xué)生在結(jié)論2的基礎(chǔ)上,進一步發(fā)現(xiàn)直角三角形三邊關(guān)系,得到勾股定理。
效果:1.讓學(xué)生歸納表述結(jié)論,可培養(yǎng)學(xué)生的抽象概括能力及語言表達能力;
2.通過作圖培養(yǎng)學(xué)生的動手實踐能力。
【八年級數(shù)學(xué)教案】相關(guān)文章:
有關(guān)八年級數(shù)學(xué)教案八年級數(shù)學(xué)教案全套10-03
八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案03-05
八年級數(shù)學(xué)教案【精】02-01
【精】八年級數(shù)學(xué)教案01-21
【薦】八年級數(shù)學(xué)教案01-17