欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

八年級數(shù)學(xué)上冊公開課教案

時間:2023-01-07 01:59:18 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

八年級數(shù)學(xué)上冊公開課教案(通用14篇)

  作為一位不辭辛勞的人民教師,總歸要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的八年級數(shù)學(xué)上冊公開課教案,僅供參考,希望能夠幫助到大家。

八年級數(shù)學(xué)上冊公開課教案(通用14篇)

  八年級數(shù)學(xué)上冊公開課教案 篇1

  【教學(xué)目標】

  1.知識與技能:會推導(dǎo)平方差公式,并且懂得運用平方差公式進行簡單計算。

  2.過程與方法:經(jīng)歷探索特殊形式的多項式乘法的過程,發(fā)展學(xué)生的符號感和推理能力,使學(xué)生逐漸掌握平方差公式。

  3.情感、態(tài)度與價值觀:通過合作學(xué)習(xí),體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。

  【教學(xué)重難點】

  重點:平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的了解。

  難點:平方差公式的應(yīng)用。

  關(guān)鍵:對于平方差公式的推導(dǎo),我們可以通過教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來計算的關(guān)鍵。

  【教學(xué)過程】

  【情境設(shè)置

  教師請一位學(xué)生講一講《狗熊掰棒子》的故事

  【學(xué)生活動】

  1位學(xué)生有聲有色地講述著《狗熊掰棒子》的'故事,其他學(xué)生認真聽著,不時補充。

  【教師歸納

  聽了這則故事之后,同學(xué)們應(yīng)該懂得這么一個道理,學(xué)習(xí)千萬不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎?

  【學(xué)生回答】

  多項式乘以多項式。

  【教師激發(fā)

  大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

  【問題牽引

  計算:

 。1)(x+2)(x—2);(2)(1+3a)(1—3a);

 。3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,觀察以上算式及運算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

  【學(xué)生活動】

  分四人小組,合作學(xué)習(xí),獲得以下結(jié)果:

  (1)(x+2)(x—2)=x2—4;

 。2)(1+3a)(1—3a)=1—9a2;

 。3)(x+5y)(x—5y)=x2—25y2;

 。4)(y+3z)(y—3z)=y2—9z2。

  【教師活動】

  請一位學(xué)生上臺演示,然后引導(dǎo)學(xué)生仔細觀察以上算式及其運算結(jié)果,尋找規(guī)律。

  【學(xué)生活動】

  討論

  【教師引導(dǎo)】

  剛才同學(xué)們從上述算式中找到了這一組整式乘法的結(jié)果的規(guī)律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學(xué)們所歸納出來的特殊多項式相乘的規(guī)律呢?

  【學(xué)生回答

  可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用語言描述就是:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。

  【教師活動】

  表揚學(xué)生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。

  八年級數(shù)學(xué)上冊公開課教案 篇2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認識其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對三角形的有關(guān)知識有更為深刻的理解

  本節(jié)課的教學(xué)重點:三角形中的相關(guān)概念和三角形三邊關(guān)系

  本節(jié)課的教學(xué)難點:三角形的三邊關(guān)系

  二、目標和目標解析

  1.教學(xué)目標

  (1)了解三角形中的相關(guān)概念,學(xué)會用符號語言表示三角形中的對應(yīng)元素

  (2)理解并且靈活應(yīng)用三角形三邊關(guān)系

  2.教學(xué)目標解析

  (1)結(jié)合具體圖形,識三角形的概念及其基本元素

  (2)會用符號、字母表示三角形中的相關(guān)元素,并會按邊對三角形進行分類

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會運用這一性質(zhì)來解決問題

  三、教學(xué)問題診斷分析

  在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神

  四、教學(xué)過程設(shè)計

  1.創(chuàng)設(shè)情境,提出問題

  問題回憶生活中的三角形實例,結(jié)合你以前對三角形的了解,請你給三角形下一個定義

  師生活動:先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對三角形概念的理解

  【設(shè)計意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對三角形概念的理解

  2.抽象概括,形成概念

  動態(tài)演示“首尾順次相接”這個的動畫,歸納出三角形的定義

  師生活動:

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形

  【設(shè)計意圖】讓學(xué)生體會由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力

  補充說明:要求學(xué)生學(xué)會三角形、三角形的'頂點、邊、角的概念以及幾何表達方法

  師生活動:結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會由文字語言向幾何語言的過渡

  【設(shè)計意圖】進一步加深學(xué)生對三角形中相關(guān)元素的認知,并進一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用

  3.概念辨析,應(yīng)用鞏固

  如圖,不重復(fù),且不遺漏地識別所有三角形,并用符號語言表示出來

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個內(nèi)角的三角形有哪些?

  3.以E為一個頂點的三角形有哪些?

  4.說出ΔBCD的三個角.

  師生活動:引導(dǎo)學(xué)生從概念出發(fā)進行思考,加深學(xué)生對三角形中相關(guān)元素概念的理解

  八年級數(shù)學(xué)上冊公開課教案 篇3

  一、教學(xué)目標

  1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。

  2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。

  3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  二、重點、難點和難點的突破方法:

  1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表

  2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。

  3、難點的突破方法:

  首先應(yīng)交待清楚中位數(shù)和眾數(shù)意義和作用:

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當(dāng)一組數(shù)據(jù)中某一重復(fù)出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。

  教學(xué)過程中注重雙基,一定要使學(xué)生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:

  ⑴將數(shù)據(jù)由小到大(或由大到小)排列

 、茢(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。

  求眾數(shù)的方法:找出頻數(shù)最多的那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。

  在利用中位數(shù)、眾數(shù)分析實際問題時,應(yīng)根據(jù)具體情況,課堂上教師應(yīng)多舉實例,使同學(xué)在分析不同實例中有所體會。

  三、例習(xí)題的意圖分析

  1、教材P143的例4的意圖

  (1)這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學(xué)中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。

  (2)這個例題另一個意圖是交待了當(dāng)數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)

  (3)問題2顯然反映學(xué)習(xí)中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學(xué)中的一個重要的數(shù)據(jù)代表。

  (4)這個例題再一次體現(xiàn)了統(tǒng)計學(xué)知識與實際生活是緊密聯(lián)系的,所以應(yīng)鼓勵學(xué)生學(xué)好這部分知識。

  2、教材P145例5的意圖

  (1)通過例5應(yīng)使學(xué)生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。

  (2)例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

  (3)例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。

  四、課堂引入

  嚴格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的`作用。

  五、例習(xí)題的分析

  教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應(yīng)將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。

  教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應(yīng)圍繞利于商家獲得較大利潤提出。

  六、隨堂練習(xí)

  1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)

  1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

  求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。

  假設(shè)銷售部負責(zé)人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

  2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:

  1匹1.2匹1.5匹2匹

  3月12臺20臺8臺4臺

  4月16臺30臺14臺8臺

  根據(jù)表格回答問題:

  商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?

  假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?

  答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。

  2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。

  七、課后練習(xí)

  1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是

  2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )

  A.97、96 B.96、96.4 C.96、97 D.98、97

  4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

  溫度(℃) -8 -1 7 15 21 24 30

  天數(shù)3 5 5 7 6 2 2

  請你根據(jù)上述數(shù)據(jù)回答問題:

  (1).該組數(shù)據(jù)的中位數(shù)是什么?

  (2).若當(dāng)氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

  答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

  八年級數(shù)學(xué)上冊公開課教案 篇4

  【教學(xué)目標】

  知識與技能

  能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

  過程與方法

  使學(xué)生經(jīng)歷探索多項式各項公因式的過程,依據(jù)數(shù)學(xué)化歸思想方法進行因式分解.

  情感、態(tài)度與價值觀

  培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進學(xué)生的合作交流意識,主動積極地積累確定公因式的初步經(jīng)驗,體會其應(yīng)用價值.

  【教學(xué)重難點】

  重點:掌握用提公因式法把多項式分解因式.

  難點:正確地確定多項式的最大公因式.

  關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

  【教學(xué)過程】

  一、回顧交流,導(dǎo)入新知

  【復(fù)習(xí)交流】

  下列從左到右的變形是否是因式分解,為什么?

  (1)2x2+4=2(x2+2);

  (2)2t2-3t+1=(2t3-3t2+t);

  (3)x2+4xy-y2=x(x+4y)-y2;

  (4)m(x+y)=mx+my;

  (5)x2-2xy+y2=(x-y)2.

  問題:

  1.多項式mn+mb中各項含有相同因式嗎?

  2.多項式4x2-x和xy2-yz-y呢?

  請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由.

  【教師歸納】我們把多項式中各項都有的公共的`因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

  概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

  二、小組合作,探究方法

  教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?

  【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項系數(shù)的最大公約數(shù);字母取各項相同的字母,并且各字母的指數(shù)取最低次冪.

  三、范例學(xué)習(xí),應(yīng)用所學(xué)

  例1:把-4x2yz-12xy2z+4xyz分解因式.

  解:-4x2yz-12xy2z+4xyz

  =-(4x2yz+12xy2z-4xyz)

  =-4xyz(x+3y-1)

  例2:分解因式:3a2(x-y)3-4b2(y-x)2

  【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

  解法1:3a2(x-y)3-4b2(y-x)2

  =-3a2(y-x)3-4b2(y-x)2

  =-[(y-x)2·3a2(y-x)+4b2(y-x)2]

  =-(y-x)2[3a2(y-x)+4b2]

  =-(y-x)2(3a2y-3a2x+4b2)

  解法2:3a2(x-y)3-4b2(y-x)2

  =(x-y)2·3a2(x-y)-4b2(x-y)2

  =(x-y)2[3a2(x-y)-4b2]

  =(x-y)2(3a2x-3a2y-4b2)

  例3:用簡便的方法計算:

  0.84×12+12×0.6-0.44×12.

  【教師活動】引導(dǎo)學(xué)生觀察并分析怎樣計算更為簡便.

  解:0.84×12+12×0.6-0.44×12

  =12×(0.84+0.6-0.44)

  =12×1=12.

  【教師活動】在學(xué)生完成例3之后,指出例3是因式分解在計算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

  四、隨堂練習(xí),鞏固深化

  課本115頁練習(xí)第1、2、3題.

  【探研時空】

  利用提公因式法計算:

  0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

  五、課堂總結(jié),發(fā)展?jié)撃?/p>

  1.利用提公因式法因式分解,關(guān)鍵是找準最大公因式.在找最大公因式時應(yīng)注意:(1)系數(shù)要找最大公約數(shù);(2)字母要找各項都有的;(3)指數(shù)要找最低次冪.

  2.因式分解應(yīng)注意分解徹底,也就是說,分解到不能再分解為止.

  六、布置作業(yè),專題突破

  課本119頁習(xí)題14.3第1、4(1)、6題.

  八年級數(shù)學(xué)上冊公開課教案 篇5

  一、教學(xué)目標:

  1、加深對加權(quán)平均數(shù)的理解

  2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題

  3、會用計算器求加權(quán)平均數(shù)的值

  二、重點、難點和難點的突破方法:

  1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  3、難點的突破方法:

  首先應(yīng)先復(fù)習(xí)組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。

  為了更好的理解這種近似計算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計表,體會表格的實際意義。

  三、例習(xí)題的意圖分析

  1、教材P140探究欄目的意圖。

  (1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。

  (2)、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。

  這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。

  2、教材P140的思考的意圖。

  (1)、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題

  (2)、幫助學(xué)生理解表中所表達出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。

  3、P141利用計算器計算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學(xué)校中學(xué)生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。

  四、課堂引入

  采用教材原有的引入問題,設(shè)計的幾個問題如下:

  (1)、請同學(xué)讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息

  (2)、這里的組中值指什么,它是怎樣確定的?

  (3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?

  (4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的.平均值和組中值有什么關(guān)系。

  五、隨堂練習(xí)

  1、某校為了了解學(xué)生作課外作業(yè)所用時間的情況,對學(xué)生作課外作業(yè)所用時間進行調(diào)查,下表是該校初二某班50名學(xué)生某一天做數(shù)學(xué)課外作業(yè)所用時間的情況統(tǒng)計表

  所用時間t(分鐘)人數(shù)

  0<t≤10 p="" 4<="">

  0<≤ 6

  20<t≤20 p="" 14<="">

  30<t≤40 p="" 13<="">

  40<t≤50 p="" 9<="">

  50<t≤60 p="" 4<="">

  (1)、第二組數(shù)據(jù)的組中值是多少?

  (2)、求該班學(xué)生平均每天做數(shù)學(xué)作業(yè)所用時間

  2、某班40名學(xué)生身高情況如下圖,

  請計算該班學(xué)生平均身高

  答案1.(1).15. (2)28. 2. 165

  六、課后練習(xí):

  1、某公司有15名員工,他們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表

  部門A B C D E F G

  人數(shù)1 1 2 4 2 2 5

  每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2

  該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元?

  2、下表是截至到2002年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡?

  年齡頻數(shù)

  28≤X<30 4

  30≤X<32 3

  32≤X<34 8

  34≤X<36 7

  36≤X<38 9

  38≤X<40 11

  40≤X<42 2

  3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。

  答案:1.約2.95萬元2.約29歲3.60.54分貝

  八年級數(shù)學(xué)上冊公開課教案 篇6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

  2.內(nèi)容解析

  本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動手操作及解決問題的能力;鼓勵學(xué)生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。

  理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個深入.學(xué)習(xí)了這一課,對于學(xué)生增長幾何知識,運用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.

  本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.

  二、目標和目標解析

  1.教學(xué)目標

  (1)理解三角形的高、中線與角平分線等概念;

  (2)會用工具畫三角形的高、中線與角平分線;

  2.教學(xué)目標解析

  (1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

  (2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質(zhì).

  (3)掌握三角形的高、中線與角平分線的畫法.

  (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

  三、教學(xué)問題診斷分析

  三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或?qū)吽诘闹本上.

  三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的`一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

  三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

  八年級數(shù)學(xué)上冊公開課教案 篇7

  【教學(xué)目標】

  知識與技能

  會推導(dǎo)平方差公式,并且懂得運用平方差公式進行簡單計算。

  過程與方法

  經(jīng)歷探索特殊形式的多項式乘法的過程,發(fā)展學(xué)生的符號感和推理能力,使學(xué)生逐漸掌握平方差公式。

  情感、態(tài)度與價值觀

  通過合作學(xué)習(xí),體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。

  【教學(xué)重難點】

  重點:平方差公式的推導(dǎo)和運用,以及對平方差公式的幾何背景的了解。

  難點:平方差公式的應(yīng)用。

  關(guān)鍵:對于平方差公式的推導(dǎo),我們可以通過教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來計算的關(guān)鍵。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,故事引入

  【情境設(shè)置】教師請一位學(xué)生講一講《狗熊掰棒子》的故事

  【學(xué)生活動】1位學(xué)生有聲有色地講述著《狗熊掰棒子》的故事,其他學(xué)生認真聽著,不時補充。

  【教師歸納】聽了這則故事之后,同學(xué)們應(yīng)該懂得這么一個道理,學(xué)習(xí)千萬不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎?

  【學(xué)生回答】多項式乘以多項式。

  【教師激發(fā)】大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

  【問題牽引】計算:

 。1)(x+2)(x—2);(2)(1+3a)(1—3a);

 。3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,觀察以上算式及運算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

  【學(xué)生活動】分四人小組,合作學(xué)習(xí),獲得以下結(jié)果:

 。1)(x+2)(x—2)=x2—4;

 。2)(1+3a)(1—3a)=1—9a2;

 。3)(x+5y)(x—5y)=x2—25y2;

 。4)(y+3z)(y—3z)=y2—9z2。

  【教師活動】請一位學(xué)生上臺演示,然后引導(dǎo)學(xué)生仔細觀察以上算式及其運算結(jié)果,尋找規(guī)律。

  【學(xué)生活動】討論

  【教師引導(dǎo)】剛才同學(xué)們從上述算式中找到了這一組整式乘法的結(jié)果的規(guī)律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學(xué)們所歸納出來的特殊多項式相乘的規(guī)律呢?

  【學(xué)生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用語言描述就是:兩個數(shù)的和與這兩個數(shù)的差的'積,等于這兩個數(shù)的平方差。

  【教師活動】表揚學(xué)生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【教師講述】

  平方差公式的運用,關(guān)鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了,F(xiàn)在大家來看看下面幾個例子,從中得到啟發(fā)。

  例1:運用平方差公式計算:

 。1)(2x+3)(2x—3);

  (2)(b+3a)(3a—b);

  (3)(—m+n)(—m—n)。

  《乘法公式》同步練習(xí)

  二、填空題

  5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個性質(zhì)是______。

  6、若32×83=2n,則n=______。

  《乘法公式》同步測試題

  25、利用正方形的面積公式和梯形的面積公式即可求解;

  根據(jù)所得的兩個式子相等即可得到。

  此題考查了平方差公式的幾何背景,根據(jù)正方形的面積公式和梯形的面積公式得出它們之間的關(guān)系是解題的關(guān)鍵,是一道基礎(chǔ)題。

  26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律;

  等式左邊減數(shù)的底數(shù)與序號相同,由此得出第n個式子;

  八年級數(shù)學(xué)上冊公開課教案 篇8

  一、教學(xué)目標

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點、難點

  1、重點:理解分式的基本性質(zhì)。

  2、難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認知難點與突破方法

  教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分數(shù)的通分、約分總結(jié)出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變。

  2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分。值得注意的是:約分是要找準分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的`過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分數(shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2.填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變。

  P11例3.約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變。所以要找準分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4.通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  八年級數(shù)學(xué)上冊公開課教案 篇9

  教學(xué)內(nèi)容

  本節(jié)課主要介紹全等三角形的概念和性質(zhì).

  教學(xué)目標

  1.知識與技能

  領(lǐng)會全等三角形對應(yīng)邊和對應(yīng)角相等的有關(guān)概念.

  2.過程與方法

  經(jīng)歷探索全等三角形性質(zhì)的過程,能在全等三角形中正確找出對應(yīng)邊、對應(yīng)角.

  3.情感、態(tài)度與價值觀

  培養(yǎng)觀察、操作、分析能力,體會全等三角形的應(yīng)用價值.

  重、難點與關(guān)鍵

  1.重點:會確定全等三角形的對應(yīng)元素.

  2.難點:掌握找對應(yīng)邊、對應(yīng)角的.方法.

  3.關(guān)鍵:找對應(yīng)邊、對應(yīng)角有下面兩種方法:

  (1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的邊是對應(yīng)邊;

  (2)對應(yīng)邊所對的角是對應(yīng)角,?兩條對應(yīng)邊所夾的角是對應(yīng)角.

  教具準備

  四張大小一樣的紙片、直尺、剪刀.

  教學(xué)方法

  采用“直觀──感悟”的教學(xué)方法,讓學(xué)生自己舉出形狀、大小相同的實例,加深認識.

  教學(xué)過程

  一、動手操作,導(dǎo)入課題

  1.先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?

  2.重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?

  【學(xué)生活動】動手操作、用腦思考、與同伴討論,得出結(jié)論.

  【教師活動】指導(dǎo)學(xué)生用剪刀剪出重疊的兩個多邊形和三角形.

  學(xué)生在操作過程中,教師要讓學(xué)生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.

  【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.

  概念:能夠完全重合的兩個三角形叫做全等三角形.

  【教師活動】在紙版上任意剪下一個三角形,要求學(xué)生手拿一個三角形,做如下運動:平移、翻折、旋轉(zhuǎn),觀察其運動前后的三角形會全等嗎?

  【學(xué)生活動】動手操作,實踐感知,得出結(jié)論:兩個三角形全等.

  【教師活動】要求學(xué)生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.

  【學(xué)生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?

  【交流討論】通過同桌交流,實驗得出下面結(jié)論:

  1.任意放置時,并不一定完全重合,?只有當(dāng)把相同的角旋轉(zhuǎn)到一起時才能完全重合.

  2.這時它們的三個頂點、三條邊和三個內(nèi)角分別重合了.

  3.完全重合說明三條邊對應(yīng)相等,三個內(nèi)角對應(yīng)相等,?對應(yīng)頂點在相對應(yīng)的位置.

  八年級數(shù)學(xué)上冊公開課教案 篇10

  教學(xué)目標

  1.知識與技能

  領(lǐng)會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點與關(guān)鍵

  1.重點:理解完全平方公式因式分解,并學(xué)會應(yīng)用.

  2.難點:靈活地應(yīng)用公式法進行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進行形式上的轉(zhuǎn)化,達到能應(yīng)用公式法分解因式的目的

  教學(xué)方法

  采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知識遷移】

  2.計算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路點撥】根據(jù)完全平方式的定義,解此題時應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的.值,即可求出a3.

  三、隨堂練習(xí),鞏固深化

  課本P170練習(xí)第1、2題.

  【探研時空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、課堂總結(jié),發(fā)展?jié)撃?/p>

  由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在運用公式因式分解時,要注意:

  (1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當(dāng)多項式是二項式時,考慮用平方差公式分解;當(dāng)多項式是三項時,應(yīng)考慮用完全平方公式分解;

  (2)在有些情況下,多項式不一定能直接用公式,需要進行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;

  (3)當(dāng)多項式各項有公因式時,應(yīng)該首先考慮提公因式,然后再運用公式分解.

  五、布置作業(yè),專題突破

  八年級數(shù)學(xué)上冊公開課教案 篇11

  知識目標:

  理解變量與函數(shù)的概念以及相互之間的關(guān)系

  能力目標:

  增強對變量的理解

  情感目標:

  滲透事物是運動的,運動是有規(guī)律的辨證思想

  重點:

  變量與常量

  難點:

  對變量的判斷

  教學(xué)媒體:

  多媒體電腦,繩圈

  教學(xué)說明:

  本節(jié)滲透找變量之間的簡單關(guān)系,試列簡單關(guān)系式

  教學(xué)設(shè)計:

  引入:

  信息1:當(dāng)你坐在摩天輪上時,想一想,隨著時間的變化,你離開地面的高度是如何變化的?

  信息2:汽車以60km/h的速度勻速前進,行駛里程為skm,行駛的時間為th,先填寫下面的表格,在試用含t的式子表示s.

  t/m 1 2 3 4 5

  s/km

  新課:

  問題:(1)每張電影票的售價為10元,如果早場售出票150張,日場售出票205張,晚場售出票310張,三場電影的票房收入各多少元?設(shè)一場電影受出票x張,票房收入為y元,怎樣用含x的`式子表示y?

  (2)在一根彈簧的下端懸掛中重物,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化規(guī)律,如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含重物質(zhì)量 m(單位:kg)的式子表示受力后彈簧長度l(單位:cm)?

  (3)要畫一個面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含圓面積s的式子表示圓的半徑r?

 。4)用10m長的繩子圍成長方形,試改變長方形的長度,觀察長方形的面積怎樣變化。記錄不同的長方形的長度值,計算相應(yīng)的長方形面積的值,探索它們的變化規(guī)律,設(shè)長方形的長為xm,面積為sm2,怎樣用含x的式子表示s?

  在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable).數(shù)值始終不變的量為常量。

  指出上述問題中的變量和常量。

  范例:寫出下列各問題中所滿足的關(guān)系式,并指出各個關(guān)系式中,哪些量是變量,哪些量是常量?

  (1)用總長為60m的籬笆圍成矩形場地,求矩形的面積s(m2)與一邊長x(m)之間的關(guān)系式;

  (2)購買單價是0.4元的鉛筆,總金額y(元)與購買的鉛筆的數(shù)量n(支)的關(guān)系;

 。3)運動員在4000m一圈的跑道上訓(xùn)練,他跑一圈所用的時間t(s)與跑步的速度v(m/s)的關(guān)系;

 。4)銀行規(guī)定:五年期存款的年利率為2.79%,則某人存入x元本金與所得的本息和y(元)之間的關(guān)系。

  活動:

  1.分別指出下列各式中的常量與變量.

  (1)圓的面積公式s=πr2;

  (2)正方形的l=4a;

  (3)大米的單價為2.50元/千克,則購買的大米的數(shù)量x(kg)與金額與金額y的關(guān)系為y=2.5x.

  2.寫出下列問題的關(guān)系式,并指出不、常量和變量.

 。1)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

 。2)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是s,求s與n之間的關(guān)系式.

  思考:

  怎樣列變量之間的關(guān)系式?

  小結(jié):

  變量與常量

  作業(yè):

  閱讀教材5頁,11.1.2函數(shù)

  八年級數(shù)學(xué)上冊公開課教案 篇12

  一、創(chuàng)設(shè)情景,明確目標

  多媒體投影一組圖片,讓同學(xué)們從中抽象出平面圖形,從而引出課題。

  二、自主學(xué)習(xí),指向目標

  學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分。

  三、合作探究,達成目標

  多邊形的定義及有關(guān)概念

  活動一:閱讀教材P19。

  展示點評:多邊形是怎么組成的?常見的多邊形有哪些?邊數(shù)最少的多邊形是幾邊形?什么是多邊形的邊、內(nèi)角、外角?

  小組討論:結(jié)合具體圖形說出多邊形的邊、內(nèi)角、外角?

  反思小結(jié):多邊形的定義及相關(guān)概念。

  針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分

  多邊形的對角線

  活動二:(1)十邊形的對角線有35條。

 。2)如果經(jīng)過多邊形的一個頂點有36條對角線,這個多邊形是39邊形。

  展示點評:結(jié)合圖形說明什么是多邊形的對角線?三角形是否有對角線?從五邊形的一個頂點出發(fā)可以引幾條對角線?五邊形有幾條對角線?從n邊形的一個頂點出發(fā)可以引幾條對角線?n邊形有多少條對角線?表達式中的(n—3)是什么意思?為什么要除以2?

  反思小結(jié):當(dāng)n為已知時,可以直接代入求得對角線的條數(shù),當(dāng)對角線條數(shù)已知時,可以化為方程來求多邊形的邊數(shù)。

  小組討論:如何靈活運用多邊形對角線條數(shù)的規(guī)律解題?

  針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分

  正多邊形的有關(guān)概念

  活動二:閱讀教材P20。

  展示點評:畫圖說明什么是凸多邊形和凹多邊形?正多邊形要求的條件是什么?邊數(shù)最少的正多邊形是什么?

  小組討論:判斷一個多邊形是否是正多邊形的條件?

  反思小結(jié):由正多邊形的概念知:滿足各邊、各角分別相等的多邊形是正多邊形。

  針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分

  四、總結(jié)梳理,內(nèi)化目標

  本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:

  1、多邊形、多邊形的'外角,多邊形的對角線。

  2、凸凹多邊形的概念。

  五、達標檢測,反思目標

  1、下列敘述正確的是(D)

  A、每條邊都相等的多邊形是正多邊形

  B、如果畫出多邊形某一條邊所在的直線,這個多邊形都在這條直線的同一側(cè),那么它一定是凸多邊形

  C、每個角都相等的多邊形叫正多邊形

  D、每條邊、每個角都相等的多邊形叫正多邊形

  2、小學(xué)學(xué)過的下列圖形中不可能是正多邊形的是(D)

  A、三角形B。正方形C。四邊形D。梯形

  3、多邊形的內(nèi)角是指多邊形相鄰兩邊組成的角;多邊形的外角是指多邊形的邊與它的鄰邊的延長線組成的角;多邊形的內(nèi)角和它相鄰的外角是鄰補角關(guān)系。

  4、已知一個四邊形的四個內(nèi)角的比為1∶2∶3∶4,求這個四邊形的各個內(nèi)角的度數(shù)。

  八年級數(shù)學(xué)上冊公開課教案 篇13

  教學(xué)目標

 。保J識變量、常量.

 。玻畬W(xué)會用含一個變量的代數(shù)式表示另一個變量.

  教學(xué)重點

  1.認識變量、常量.

  2.用式子表示變量間關(guān)系.

  教學(xué)難點

  用含有一個變量的式子表示另一個變量.

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.

  1.請同學(xué)們根據(jù)題意填寫下表:

  t/時 1 2 3 4 5

  s/千米

 。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.

 。常囉煤瑃的式子表示s.

 、颍畬(dǎo)入新課

  首先讓學(xué)生思考上面的幾個問題,可以互相討論一下,然后回答.

  從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.

  這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時.

  [活動一]

  1.每張電影票售價為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的.票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?

 。玻谝桓鶑椈傻南露藨覓熘匚,改變并記錄重物的質(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?

  引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律.

  結(jié)論:

 。保鐖鲭娪捌狈渴杖耄150×10=1500(元)

  日場電影票房收入:205×10=2050(元)

  晚場電影票房收入:310×10=3100(元)

  關(guān)系式:y=10x

 。玻畳1kg重物時彈簧長度: 1×0.5+10=10.5(cm)

  掛2kg重物時彈簧長度:2×0.5+10=11(cm)

  掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)

  關(guān)系式:L=0.5m+10

  通過上述活動,我們清楚地認識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.

  [活動二]

 。保嬕粋面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?

 。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結(jié)論:

 。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關(guān)系式:r=

 。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.

  若長為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學(xué)過的一些有關(guān)知識公式進行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.

 、螅S堂練習(xí)

  1.購買一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.

 。玻粋三角形的底邊長5cm,高h可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.

  解:1.買1支鉛筆價值1×0.2=0.2(元)

  買2支鉛筆價值2×0.2=0.4(元)

  ……

  買x支鉛筆價值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.

  2.根據(jù)三角形面積公式可知:

  當(dāng)高h為1cm時,面積S= ×5×1=2.5cm2

  當(dāng)高h為2cm時,面積S= ×5×2=5cm2

  … …

  當(dāng)高為hcm,面積S= ×5×h=2.5hcm2

  八年級數(shù)學(xué)上冊公開課教案 篇14

  教學(xué)目標:

  1、知識目標:了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

  2、能力目標:經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗點:經(jīng)歷對典型圖案設(shè)計意圖的分析,進一步發(fā)展學(xué)生的空間觀念,增強審美意識,培養(yǎng)學(xué)生積極進取的生活態(tài)度。

  重點與難點:

  重點:靈活運用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進行的圖案設(shè)計。

  難點:分析典型圖案的設(shè)計意圖。

  疑點:在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

  教具學(xué)具準備:

  提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學(xué)過程設(shè)計:

  1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復(fù)習(xí)旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學(xué)生初步了解圖案的`設(shè)計中常常運用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

  圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點。

  可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進行交流。

  (四)課時小結(jié)

  本課時的重點是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運用這些變換設(shè)計出一些簡單的圖案。

  通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

  (五)延伸拓展

  進一步搜集身邊的各種標志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

【八年級數(shù)學(xué)上冊公開課教案】相關(guān)文章:

數(shù)學(xué)八年級上冊教案03-02

初中數(shù)學(xué)八年級上冊教案02-06

八年級數(shù)學(xué)公開課教案02-19

數(shù)學(xué)公開課教案01-09

八年級上冊英語公開課教案(精選6篇)04-08

八年級上冊數(shù)學(xué)優(yōu)秀教案01-23

八年級上冊數(shù)學(xué)教案01-13

八年級數(shù)學(xué)上冊教案02-27

數(shù)學(xué)八年級上冊教案15篇03-02