- 相關(guān)推薦
初中數(shù)學(xué)教育教案
作為一名專為他人授業(yè)解惑的人民教師,時(shí)常要開展教案準(zhǔn)備工作,編寫教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。我們?cè)撛趺慈懡贪改?下面是小編精心整理的初中?shù)學(xué)滲透生態(tài)文明教育教案,僅供參考,歡迎大家閱讀。
初中數(shù)學(xué)滲透生態(tài)文明教育教案1
教學(xué)目標(biāo)
1.使學(xué)生認(rèn)識(shí)字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進(jìn)步;
2.了解代數(shù)式的概念,使學(xué)生能說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系;
3.通過對(duì)用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4.通過本節(jié)課的教學(xué),使學(xué)生深刻體會(huì)從特殊到一般的的數(shù)學(xué)思想方法。
教學(xué)建議
1. 知識(shí)結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過的字母表示的兩種實(shí)例,一是運(yùn)算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進(jìn)而引出代數(shù)式的概念。
2.教學(xué)重點(diǎn)分析:教科書,介紹了小學(xué)用字母表示數(shù)的實(shí)例,一個(gè)是運(yùn)算律,一個(gè)是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡(jiǎn)明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進(jìn)步,是代數(shù)的顯著特點(diǎn)。運(yùn)用算術(shù)的方法解決問題,是小學(xué)學(xué)生的思維方法 ,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識(shí)上是一個(gè)質(zhì)的飛躍。對(duì)代數(shù)式的概念課文沒有直接給出,而是用實(shí)例形象地說明了代數(shù)式的概念。對(duì)代數(shù)式的概念可以從三個(gè)方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡(jiǎn)明、普遍的優(yōu)越性.
(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時(shí)出現(xiàn),單獨(dú)的一個(gè)數(shù)和字母也是代數(shù)式.如:2,m都是代數(shù)式.
等都不是代數(shù)式.
3.教學(xué)難點(diǎn)分析:能正確說出一個(gè)代數(shù)式的數(shù)量關(guān)系,即用語言表達(dá)代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運(yùn)算及其順序。用語言表達(dá)代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡(jiǎn)明而不引起誤會(huì)為出發(fā)點(diǎn)。
如:說出代數(shù)式7(a-3)的意義。
分析 7(a-3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a-3呢?還是7(a-3)呢?有模棱兩可之感。代數(shù)式7(a-3)的最后運(yùn)算是積,應(yīng)把a(bǔ)-3作為一個(gè)整體。所以,7(a-3)的意義是7與(a-3)的積。
4.書寫代數(shù)式的注意事項(xiàng):
(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時(shí),通常把乘號(hào)簡(jiǎn)寫作“·”或省略不寫,同時(shí)要求數(shù)字應(yīng)寫在字母前面.
如3×a ,應(yīng)寫作3.a 或?qū)懽?a ,a×b 應(yīng)寫作3.a 或?qū)懽鱝b .帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),
#FormatImgID_0#
.數(shù)字與數(shù)字相乘一般仍用“×”號(hào).
(2)代數(shù)式中有除法運(yùn)算時(shí),一般按照分?jǐn)?shù)的寫法來寫.
(3)含有加減運(yùn)算的代數(shù)式需注明單位時(shí),一定要把整個(gè)式子括起來.
5.對(duì)本節(jié)例題的分析:
例1是用代數(shù)式表示幾個(gè)比較簡(jiǎn)單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過.比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹.
例2是說出一些比較簡(jiǎn)單的代數(shù)式的意義.因?yàn)榇鷶?shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的.數(shù),就可以像看待原來比較熟悉的數(shù)式一樣,說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號(hào)可能省略等新規(guī)定而已.
6.教法建議
(1)因?yàn)檫@一章知識(shí)大部分在小學(xué)學(xué)習(xí)過,講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過的運(yùn)算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問題。這樣即復(fù)習(xí)了舊知識(shí),又引出了新知識(shí),能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個(gè)良好的開端。
(2)在本節(jié)的學(xué)習(xí)過程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實(shí)生活的例子),使學(xué)生從感性上認(rèn)識(shí)什么是代數(shù)式,理清代數(shù)式中的運(yùn)算和運(yùn)算順序,才能正確說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識(shí)字母表示數(shù)的意義——普遍性、簡(jiǎn)明性,也為列代數(shù)式做準(zhǔn)備。
(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對(duì)全章內(nèi)容和課時(shí)安排有一個(gè)了解,注意前后知識(shí)的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識(shí),久而久之,學(xué)生頭腦中自然會(huì)形成一個(gè)完整的知識(shí)體系。
(5)因?yàn)槭切聦W(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個(gè)好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個(gè)自我介紹,然后為學(xué)生說一段祝福語。第二,上課時(shí)盡量使用多種語言與學(xué)生交流,其中包括情感語言(眉目語言、手勢(shì)語言等),讓學(xué)生感受到老師對(duì)他的關(guān)心。
7.教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn):用字母表示數(shù)的意義
難點(diǎn):學(xué)會(huì)用字母表示數(shù)及正確說出一個(gè)代數(shù)式所表示的數(shù)量關(guān)系。
教學(xué)設(shè)計(jì)示例
課堂教學(xué)過程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1在小學(xué)我們?cè)鴮W(xué)過幾種運(yùn)算律?都是什么?如可用字母表示它們?
(通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運(yùn)算律)
(1)加法交換律 a+b=b+a;
(2)乘法交換律 a·b=b·a;
(3)加法結(jié)合律 (a+b)+c=a+(b+c);
(4)乘法結(jié)合律 (ab)c=a(bc);
(5)乘法分配律 a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號(hào)或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;
(2)上面各種運(yùn)算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學(xué)過的一切數(shù)
2(投影)從甲地到乙地的路程是15千米,步行要3小時(shí),騎車要1小時(shí),乘汽車要0.25小時(shí),試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時(shí)間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個(gè)正方形的邊長(zhǎng)是a厘米,則這個(gè)正方形的周長(zhǎng)是多少?面積是多少?
(用I厘米表示周長(zhǎng),則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時(shí),教師應(yīng)指出:(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡(jiǎn)明的表示出來;(2)在公式與中,用字母表示數(shù)也會(huì)給運(yùn)算帶來方便;(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代數(shù)式.那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容.
三、講授新課
1代數(shù)式
單獨(dú)的一個(gè)數(shù)字或單獨(dú)的一個(gè)字母以及用運(yùn)算符號(hào)把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式.學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義
2舉例說明
例1 填空:
(1)每包書有12冊(cè),n包書有__________冊(cè);
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長(zhǎng)是a厘米的正方體的體積是_____立方厘米;
(4)產(chǎn)量由m千克增長(zhǎng)10%,就達(dá)到_______千克
(此例題用投影給出,學(xué)生口答完成)
解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m
例2 說出下列代數(shù)式的意義:
解:(1)2a+3的意義是2a與3的和;(2)2(a+3)的意義是2與(a+3)的積;
(5)a2+b2的意義是a,b的平方的和;(6)(a+b)2的意義是a與b的和的平方
說明:(1)本題應(yīng)由教師示范來完成;
(2)對(duì)于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡(jiǎn)明而不致引起誤會(huì)為出發(fā)點(diǎn)如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3 用代數(shù)式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數(shù)式表示用語言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號(hào)的使用;②字母與數(shù)字做乘積時(shí),習(xí)慣上數(shù)字要寫在字母的前面
四、課堂練習(xí)
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學(xué)生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____
2說出下列代數(shù)式的意義:(投影)
3用代數(shù)式表示:(投影)
(1)x與y的和; (2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和; (4)a除以2的商與b除3的商的和
五、師生共同小結(jié)
首先,提出如下問題:
1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?
3什么叫代數(shù)式?
教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:①代數(shù)式實(shí)際上就是算式,字母像數(shù)字一樣也可以進(jìn)行運(yùn)算;②在代數(shù)式和運(yùn)算結(jié)果中,如有單位時(shí),要正確地使用括號(hào)
六、作業(yè)
1一個(gè)三角形的三條邊的長(zhǎng)分別的a,b,c,求這個(gè)三角形的周長(zhǎng)
2張強(qiáng)比王華大3歲,當(dāng)張強(qiáng)a歲時(shí),王華的年齡是多少?
3飛機(jī)的速度是汽車的40倍,自行車的速度是汽車的1/3 ,若汽車的速度是ν千米/時(shí),那么,飛機(jī)與自行車的速度各是多少?
4a千克大米的售價(jià)是6元,1千克大米售多少元?
5圓的半徑是R厘米,它的面積是多少?
6用代數(shù)式表示:
(1)長(zhǎng)為a,寬為b米的長(zhǎng)方形的周長(zhǎng);
(2)寬為b米,長(zhǎng)是寬的2倍的長(zhǎng)方形的周長(zhǎng);
(3)長(zhǎng)是a米,寬是長(zhǎng)的1/3 的長(zhǎng)方形的周長(zhǎng);
(4)寬為b米,長(zhǎng)比寬多2米的長(zhǎng)方形的周長(zhǎng)
初中數(shù)學(xué)滲透生態(tài)文明教育教案2
一、教學(xué)目標(biāo)
1、了解二次根式的意義;
2、掌握用簡(jiǎn)單的一元一次不等式解決二次根式中字母的取值問題;
3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;
4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;
5、通過二次根式性質(zhì)和的介紹滲透對(duì)稱性、規(guī)律性的數(shù)學(xué)美。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):
(1)二次根的意義;
。2)二次根式中字母的取值范圍。
難點(diǎn):確定二次根式中字母的取值范圍。
三、教學(xué)方法
啟發(fā)式、講練結(jié)合。
四、教學(xué)過程
(一)復(fù)習(xí)提問
1、什么叫平方根、算術(shù)平方根?
2、說出下列各式的意義,并計(jì)算
(二)引入新課
新課:二次根式
定義:式子叫做二次根式。
對(duì)于請(qǐng)同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):
(1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?
若根式中含有字母必須保證根號(hào)下式子大于等于零,因此字母范圍的限制也是根式的一部分。
(2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”。請(qǐng)學(xué)生舉出幾個(gè)二次根式的.例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。
例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?
例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?
解:略。
說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。
例3當(dāng)字母取何值時(shí),下列各式為二次根式:
分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。
解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。
。2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。
。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。
。4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。
例4下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。
解:(1)由2a+3≥0,得。
。2)由,得3a—1>0,解得。
。3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。
。4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。
初中數(shù)學(xué)滲透生態(tài)文明教育教案3
教學(xué)目標(biāo):
1、讓學(xué)生在已有的分?jǐn)?shù)乘整數(shù)的基礎(chǔ)上,通過小組合作,自主探究建構(gòu),使學(xué)生理解一個(gè)數(shù)乘分?jǐn)?shù)的意義,掌握分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算方法,能夠應(yīng)用分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算法則,比較熟練地進(jìn)行計(jì)算。
2、讓學(xué)生在合作學(xué)習(xí)、匯報(bào)展示、互動(dòng)交流中,體驗(yàn)學(xué)習(xí)帶來的喜悅,培養(yǎng)學(xué)生的學(xué)科興趣和學(xué)習(xí)能力。
3、讓學(xué)生在課堂學(xué)習(xí)中感悟到數(shù)學(xué)知識(shí)的魅力,領(lǐng)略到美。
教學(xué)重點(diǎn):
讓學(xué)生理解一個(gè)數(shù)乘分?jǐn)?shù)的意義,掌握分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算方法。
教學(xué)難點(diǎn):
總結(jié)分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算方法。
教學(xué)過程:
一、復(fù)習(xí)引入,提出學(xué)習(xí)目標(biāo)。
1、復(fù)習(xí)。
計(jì)算下列各題并說出計(jì)算方法。
1/10× 5/8×53/7×
上面各題都是分?jǐn)?shù)乘以整數(shù),說一說分?jǐn)?shù)乘整數(shù)的意義。
2、揭題:分?jǐn)?shù)乘分?jǐn)?shù)
3、提出學(xué)習(xí)目標(biāo)。
讓學(xué)生先說一說,再出示學(xué)習(xí)目標(biāo)
(1)一個(gè)數(shù)乘分?jǐn)?shù)的意義與分?jǐn)?shù)乘整數(shù)的意義是否相同。
(2)分?jǐn)?shù)乘分?jǐn)?shù)的計(jì)算方法
二、展示學(xué)習(xí)成果。
1、小組內(nèi)個(gè)人展示
學(xué)生獨(dú)立自學(xué)、完成課本10頁例3、“做一做”(教師相機(jī)進(jìn)行指導(dǎo),收集學(xué)生的學(xué)習(xí)信息,重在讓學(xué)生展示不同的思維方法和錯(cuò)例,特別是引導(dǎo)小組內(nèi)學(xué)生之間的交流與探討)
2、全班展示
(1)一個(gè)數(shù)乘分?jǐn)?shù)的意義展示
1/5×3/4就是求1/5的3/4是多少;1/3×1/4就是求1/3的1/4是多少
(2)算法展示
生1:不能約分,直接分子乘分子,分母乘分母。
1/5×3/4=1×3/5×4=3/20
生2:先計(jì)算出結(jié)果,再進(jìn)行約分。
8/9×3/10=8×3/9×10=24/90=4/15
生3:在計(jì)算過程中能約分的`先約分,再計(jì)算。
8/9×3/103與9先約分,8與10先約分,再計(jì)算。
2)比較二、三兩種計(jì)算方法,選擇算法。
通過對(duì)比,讓學(xué)生體會(huì)先約分再計(jì)算的方法比較簡(jiǎn)便,同時(shí)向?qū)W生說明先約分的書寫格式。
(3)錯(cuò)例展示:
錯(cuò)例1:約分后,把分子與分子相加,分母與分母相加;錯(cuò)例2:學(xué)生沒把計(jì)算結(jié)果約成最簡(jiǎn)分?jǐn)?shù)。
3、學(xué)生質(zhì)疑問難,激發(fā)知識(shí)沖突。
(1)針對(duì)同學(xué)的展示,學(xué)生自由質(zhì)疑問難。
(2)教師引導(dǎo)學(xué)困生提出問題:同學(xué)們,你在學(xué)習(xí)中碰到困難了嗎?能把你遇到的困難說給大家聽嗎?那你對(duì)同學(xué)的展示有什么想法與建議嗎?
4、引導(dǎo)歸納一個(gè)數(shù)乘分?jǐn)?shù)的意義和計(jì)算方法。
(1)意義:一個(gè)數(shù)乘分?jǐn)?shù),表示求這個(gè)數(shù)的幾分之幾是多少。
(2)計(jì)算法則:分?jǐn)?shù)乘分?jǐn)?shù),用分子乘分子,分母乘分母,能約分的先約分,再計(jì)算。
三、拓展知識(shí)外延
1、完成課本12至13頁練習(xí)二第3、6題。
2、生活中的數(shù)學(xué)
(1)一個(gè)長(zhǎng)方形長(zhǎng)3/5分米,寬1/2分米,它的周長(zhǎng)、面積各是多少?
(2)用三個(gè)同樣大小的正方形可以拼成一個(gè)新的圖形。如果正方形的邊長(zhǎng)是3/5分米,那么拼成的新圖形的周長(zhǎng)是多少?
四、總結(jié)反思,激勵(lì)評(píng)價(jià)。
五、布置作業(yè):
1、列式計(jì)算
(1)的是多少?
(2)千克的是多少?
(3)小時(shí)的是多少?
2、智力沖浪:甲乙兩個(gè)倉庫,甲倉存糧30噸,如果從甲倉中1/5取出放入乙倉,則兩倉存糧數(shù)相等.兩倉一共存糧多少千克?(A類同學(xué)做)
【初中數(shù)學(xué)教育教案】相關(guān)文章:
初中數(shù)學(xué) 教案02-24
數(shù)學(xué)初中教案11-06
初中數(shù)學(xué)矩形教案12-30
初中數(shù)學(xué)實(shí)數(shù)教案01-06
初中數(shù)學(xué)圓教案04-17
初中數(shù)學(xué)教案08-12
初中數(shù)學(xué)《梯形》教案08-26
初中數(shù)學(xué)命題教案02-23
初中數(shù)學(xué)《圓 》教案12-30