欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

<meter id="ghgkc"><wbr id="ghgkc"></wbr></meter><track id="ghgkc"></track>
    <meter id="ghgkc"></meter><meter id="ghgkc"><object id="ghgkc"></object></meter>

    八年級數(shù)學(xué)教案

    時間:2024-12-07 19:53:09 數(shù)學(xué)教案 我要投稿

    有關(guān)八年級數(shù)學(xué)教案模板匯編7篇

      作為一名教職工,時常會需要準(zhǔn)備好教案,借助教案可以讓教學(xué)工作更科學(xué)化。怎樣寫教案才更能起到其作用呢?以下是小編幫大家整理的八年級數(shù)學(xué)教案7篇,歡迎閱讀,希望大家能夠喜歡。

    有關(guān)八年級數(shù)學(xué)教案模板匯編7篇

    八年級數(shù)學(xué)教案 篇1

      課題:一元二次方程實(shí)數(shù)根錯例剖析課

      【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

      【課前練習(xí)】

      1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。

      2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實(shí)數(shù)根,當(dāng)△_______時,方程有兩個不相等的實(shí)數(shù)根,當(dāng)△________時,方程沒有實(shí)數(shù)根。

      【典型例題】

      例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

      (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

      錯答: B

      正解: C

      錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

      例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

      (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

      錯解 :B

      正解:D

      錯因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

      例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實(shí)根,求k的取值范圍。

      錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

      錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實(shí)上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠蹋豢赡苡袃蓚實(shí)根。

      正解: -1≤k<2且k≠

      例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實(shí)數(shù)根,當(dāng)x12+x22=15時,求m的值。

      錯解:由根與系數(shù)的關(guān)系得

      x1+x2= -(2m+1), x1x2=m2+1,

      ∵x12+x22=(x1+x2)2-2 x1x2

      =[-(2m+1)]2-2(m2+1)

     。2 m2+4 m-1

      又∵ x12+x22=15

      ∴ 2 m2+4 m-1=15

      ∴ m1 = -4 m2 = 2

      錯因剖析:漏掉了一元二次方程有兩個實(shí)根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

      正解:m = 2

      例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

      錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

      ∵ △≥0

      ∴ 16 m+20≥0,

      ∴ m≥ -5/4

      又 ∵ m2-1≠0,

      ∴ m≠±1

      ∴ m的取值范圍是m≠±1且m≥ -

      錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的`方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠蹋杂袑?shí)數(shù)根。

      正解:m的取值范圍是m≥-

      例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

      錯解:∵方程有整數(shù)根,

      ∴△=9-4a>0,則a<2.25

      又∵a是非負(fù)數(shù),∴a=1或a=2

      令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

      ∴方程的整數(shù)根是x1= -1, x2= -2

      錯因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3

      正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

      【練習(xí)】

      練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實(shí)數(shù)根x1、x2。

     。1)求k的取值范圍;

     。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。

      解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

      ∴當(dāng)k< 時,方程有兩個不相等的實(shí)數(shù)根。

     。2)存在。

      如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗k= 是方程- 的解。

      ∴當(dāng)k= 時,方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

      讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

      解:上面解法錯在如下兩個方面:

     。1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實(shí)數(shù)根。

     。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)

      練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

      解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=

     。2)當(dāng)a≠0時,∵△=16+4a≥0 ∴a≥ -4

      ∴當(dāng)a≥ -4且a≠0時,方程有實(shí)數(shù)根。

      又因為方程只有正實(shí)數(shù)根,設(shè)為x1,x2,則:

      x1+x2=- >0 ;

      x1. x2=- >0 解得 :a<0

      綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實(shí)數(shù)根。

      【小結(jié)】

      以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

      1、運(yùn)用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。

      2、運(yùn)用根與系數(shù)關(guān)系時,△≥0是前提條件。

      3、條件多面時(如例5、例6)考慮要周全。

      【布置作業(yè)】

      1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

      2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

      求證:關(guān)于x的方程

      (m-5)x2-2(m+2)x + m=0一定有一個或兩個實(shí)數(shù)根。

      考題匯編

      1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

      2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

     。1)若方程的一個根為1,求m的值。

      (2)m=5時,原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請說明理由。

      3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

      4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

    八年級數(shù)學(xué)教案 篇2

      一、教學(xué)目標(biāo)

      1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

      2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.

      二、重點(diǎn)、難點(diǎn)

      1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

      2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

      3.難點(diǎn)的突破方法:

      三、課堂引入

      創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.

      四、例習(xí)題分析

      例1(P83例2)

      分析:⑴了解方位角,及方位名詞;

      ⑵依題意畫出圖形;

     、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

     、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

     、伞螾RS=∠QPR—∠QPS=45°.

      小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

      例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

      分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

      ⑵設(shè)未知數(shù)列方程,求出三角形的`三邊長5、12、13;

     、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

      解略.

      本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識.

    八年級數(shù)學(xué)教案 篇3

      一、創(chuàng)設(shè)情境

      在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問題.

      問題1如圖是某地一天內(nèi)的氣溫變化圖.

      看圖回答:

      (1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

      (2)這一天中,最高氣溫是多少?最低氣溫是多少?

      (3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

      解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

      (2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

      (3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

      從圖中我們可以看到,隨著時間t(時)的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的'數(shù)量關(guān)系呢?

      二、探究歸納

      問題2銀行對各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

      觀察上表,說說隨著存期x的增長,相應(yīng)的年利率y是如何變化的.

      解隨著存期x的增長,相應(yīng)的年利率y也隨著增長.

      問題3收音機(jī)刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對應(yīng)的數(shù)值:

      觀察上表回答:

      (1)波長l和頻率f數(shù)值之間有什么關(guān)系?

      (2)波長l越大,頻率f就________.

      解(1)l與f的乘積是一個定值,即

      lf=300000,

      或者說.

      (2)波長l越大,頻率f就 越小 .

      問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.

      利用這個關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結(jié)果填入下表:

      由此可以看出,圓的半徑越大,它的面積就_________.

      解S=πr2.

      圓的半徑越大,它的面積就越大.

      在上面的問題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

      上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關(guān).一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

    八年級數(shù)學(xué)教案 篇4

      一、創(chuàng)設(shè)情境

      1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?

     。ㄒ淮魏瘮(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點(diǎn)即可畫出函數(shù)的圖象).

      2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

     。ㄕ壤瘮(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).

      3.平面直角坐標(biāo)系中,x軸、y軸上的點(diǎn)的坐標(biāo)有什么特征?

      4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點(diǎn)在坐標(biāo)系的什么地方?

      二、探究歸納

      1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

      2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

      分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

      解因為x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時,x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時,y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

      過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

      所以一次函數(shù)y=kx+b,當(dāng)x=0時,y=b;當(dāng)y=0時,.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

      三、實(shí)踐應(yīng)用

      例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的.表達(dá)式.

      分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

      解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

      例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

      分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

    八年級數(shù)學(xué)教案 篇5

      分式方程

      教學(xué)目標(biāo)

      1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

      2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

      3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

      教學(xué)重點(diǎn):

      將實(shí)際問題中的等量 關(guān)系用分式方程表示

      教學(xué)難點(diǎn):

      找實(shí)際問題中的等量關(guān)系

      教學(xué)過程:

      情境導(dǎo)入:

      有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的`產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

      如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

      根據(jù)題意,可得方程___________________

      二、講授新課

      從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

      這 一問題中有哪些等量關(guān)系?

      如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

      根據(jù)題意,可得方程_ _____________________。

      學(xué)生分組探討、交流,列出方程.

      三.做一做:

      為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

      四.議一議:

      上面所得到的方程有什么共同特點(diǎn)?

      分母中含有未知數(shù)的方程叫做分式方程

      分式方程與整式方程有什么區(qū)別?

      五、 隨堂練習(xí)

      (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

      (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

      (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

      六、學(xué) 習(xí)小結(jié)

      本節(jié)課你學(xué)到了哪些知識?有什么感想?

      七.作業(yè)布置

    八年級數(shù)學(xué)教案 篇6

      教學(xué)目標(biāo):

      1、經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對圖形欣賞的意識。

      2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。

      教學(xué)重點(diǎn):本節(jié)課重點(diǎn)是掌握已知對稱軸L和一個點(diǎn),要畫出點(diǎn)A關(guān)于L的軸對稱點(diǎn)的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點(diǎn)。

      教學(xué)方法:動手實(shí)踐、討論。

      教學(xué)工具:課件

      教學(xué)過程:

      一、 先復(fù)習(xí)軸對稱圖形的'定義,以及軸對稱的相關(guān)的性質(zhì):

      1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

      2.軸對稱的三個重要性質(zhì)______________________________________________

      _____________________________________________________________________

      二、提出問題:

      二、探索練習(xí):

      1. 提出問題:

      如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

      你能畫出這個圖案的另一半嗎?

      吸引學(xué)生讓學(xué)生有一種解決難點(diǎn)的想法。

      2.分析問題:

      分析圖案:這個圖案是由重要六個點(diǎn)構(gòu)成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點(diǎn)的對應(yīng)點(diǎn)即可

      問題轉(zhuǎn)化成:已知對稱軸和一個點(diǎn)A,要畫出點(diǎn)A關(guān)于L的對應(yīng)點(diǎn) ,可采用如下方法:`

      在學(xué)生掌握已知一個點(diǎn)畫對應(yīng)點(diǎn)的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。

      三、對所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):

      1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

      2. 試畫出與線段AB關(guān)于直線L的線段

      3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

      小 結(jié): 本節(jié)課學(xué)習(xí)了已知對稱軸L和一個點(diǎn)如何畫出它的對應(yīng)點(diǎn),以及如何補(bǔ)全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。

      教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

    八年級數(shù)學(xué)教案 篇7

      教學(xué)目標(biāo):

      情意目標(biāo):培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神,體驗探究成功的樂趣。

      能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。

      認(rèn)知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。

      教學(xué)重點(diǎn)、難點(diǎn)

      重點(diǎn):等腰梯形性質(zhì)的探索;

      難點(diǎn):梯形中輔助線的添加。

      教學(xué)課件:PowerPoint演示文稿

      教學(xué)方法:啟發(fā)法、

      學(xué)習(xí)方法:討論法、合作法、練習(xí)法

      教學(xué)過程:

     。ㄒ唬⿲(dǎo)入

      1、出示圖片,說出每輛汽車車窗形狀(投影)

      2、板書課題:5梯形

      3、練習(xí):下列圖形中哪些圖形是梯形?(投影)

      結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

      5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

      6、特殊梯形的分類:(投影)

      (二)等腰梯形性質(zhì)的探究

      【探究性質(zhì)一】

      思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

      猜想:由此你能得到等腰梯形的`內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)

      如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

      想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

      等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。

      【操練】

     。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

     。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點(diǎn)E,CA平分∠BCD,求證:∠B=2∠E.(投影)

      【探究性質(zhì)二】

      如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)

      如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

      等腰梯形性質(zhì):等腰梯形的兩條對角線相等。

      【探究性質(zhì)三】

      問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)

      問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點(diǎn)討論)

      等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等

      (三)質(zhì)疑反思、小結(jié)

      讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;

      學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

    【八年級數(shù)學(xué)教案】相關(guān)文章:

    有關(guān)八年級數(shù)學(xué)教案八年級數(shù)學(xué)教案全套10-03

    八年級數(shù)學(xué)教案09-01

    八年級數(shù)學(xué)教案03-05

    【熱門】八年級數(shù)學(xué)教案01-31

    八年級數(shù)學(xué)教案【精】02-01

    【精】八年級數(shù)學(xué)教案01-21

    八年級數(shù)學(xué)教案【熱門】01-18

    【熱】八年級數(shù)學(xué)教案01-18

    八年級數(shù)學(xué)教案[薦]06-22

    八年級上冊數(shù)學(xué)教案01-13