欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

任意角三角函數(shù)數(shù)學(xué)教案

時間:2024-02-27 13:57:50 其它教案 我要投稿
  • 相關(guān)推薦

任意角三角函數(shù)數(shù)學(xué)教案

  作為一位杰出的老師,常常要根據(jù)教學(xué)需要編寫教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編幫大家整理的任意角三角函數(shù)數(shù)學(xué)教案,希望能夠幫助到大家。

任意角三角函數(shù)數(shù)學(xué)教案

任意角三角函數(shù)數(shù)學(xué)教案1

  一、教學(xué)目標(biāo)

  1、掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號判斷);了解任意角的余切、正割、余割函數(shù)的定義。

  2、經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、發(fā)展過程。領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗。

  3、培養(yǎng)學(xué)生通過現(xiàn)象看本質(zhì)的唯物主義認(rèn)識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀。

  4、培養(yǎng)學(xué)生求真務(wù)實、實事求是的科學(xué)態(tài)度。

  二、重點、難點、關(guān)鍵

  重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號判斷法。

  難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù)。

  關(guān)鍵:如何想到建立直角坐標(biāo)系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化)。

  三、教學(xué)理念和方法

  教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動手實踐、合作交流、閱讀自學(xué),師生互動,教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過程。

  根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué)。

  四、教學(xué)過程

  執(zhí)教線索:

  回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)——問題情境:能推廣到任意角嗎?——它山之石:建立直角坐標(biāo)系(為何?)——優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)——探索發(fā)展:對任意角研究六個比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)——自主定義:任意角三角函數(shù)定義——登高望遠(yuǎn):三角函數(shù)的要素分析(對應(yīng)法則、定義域、值域與正負(fù)符號判定)——例題與練——回顧小結(jié)——布置作業(yè)]

 。ㄒ唬⿵(fù)習(xí)引入、回想再認(rèn)

  開門見山,面對全體學(xué)生提問:

  在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?

  探索任意角的三角函數(shù)(板書課題),請同學(xué)們回想,再明確一下:

 。ㄇ榫1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

  讓學(xué)生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強調(diào):

  傳統(tǒng)定義:設(shè)在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應(yīng),那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域。

  現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域。

  設(shè)計意圖:

  函數(shù)和三角函數(shù)是一般和特殊的關(guān)系,是共性和個性的關(guān)系,學(xué)生已經(jīng)學(xué)習(xí)了函數(shù)的概念,因此對三角函數(shù)的學(xué)習(xí)就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程。教學(xué)經(jīng)驗表明:學(xué)生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學(xué)生對函數(shù)概念進(jìn)行回想再認(rèn),目的在于明確函數(shù)概念的本質(zhì),為演繹學(xué)習(xí)任意角三角函數(shù)概念作好知識和認(rèn)知準(zhǔn)備。

 。ㄇ榫2)我們在初中通過銳角三角形的邊角關(guān)系,學(xué)習(xí)了銳角的正弦、余弦、正切等三個三角函數(shù)。請回想:這三個三角函數(shù)分別是怎樣規(guī)定的?

  學(xué)生口述后再投影展示,教師再根據(jù)投影進(jìn)行強調(diào):

  設(shè)計意圖:

  學(xué)生在初中學(xué)習(xí)了銳角的三角函數(shù)概念,現(xiàn)在學(xué)習(xí)任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展)。溫故知新,要讓學(xué)生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學(xué)生現(xiàn)有認(rèn)知狀況開始,對銳角三角函數(shù)的復(fù)習(xí)就必不可少。

  (二)引伸鋪墊、創(chuàng)設(shè)情景

  (情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時間讓學(xué)生獨立思考或自由討論,教師參與討論或巡回對學(xué)困生作啟發(fā)引導(dǎo)。

  能推廣嗎?怎樣推廣?針對剛才的問題點名讓學(xué)生回答。用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生一般會想到(否則教師進(jìn)行提示)繼續(xù)用直角坐標(biāo)系來研究任意角的三角函數(shù)。

  設(shè)計意圖:

  從學(xué)生現(xiàn)有知識水平和認(rèn)知能力出發(fā),創(chuàng)設(shè)問題情景,讓學(xué)生產(chǎn)生認(rèn)知沖突,進(jìn)行必要的啟發(fā),將學(xué)生思維引上自主探索、合作交流的“再創(chuàng)造”征程。

  教師對學(xué)生回答情況進(jìn)行點評后布置任務(wù)情景:請同學(xué)們用直角坐標(biāo)系重新研究銳角三角函數(shù)定義!

  師生共做(學(xué)生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負(fù)半軸重合)在直角坐標(biāo)系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構(gòu)造一個RtΔomP,則∠moP=α(銳角),設(shè)P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r。

  根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應(yīng)列出三個倒數(shù)比值:

  設(shè)計意圖:

  此處做法簡單,思想重要。為了順利實現(xiàn)推廣,可以構(gòu)建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形。由于前一節(jié)已經(jīng)以直角坐標(biāo)系為工具來研究任意角了,學(xué)生自然能想到仍然以直角坐標(biāo)系為工具來研究任意角的三角函數(shù)。初中以直角三角形邊角關(guān)系來定義銳角三角函數(shù),現(xiàn)在要用坐標(biāo)系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義。這是一個認(rèn)識的飛躍,是理解任意角三角函數(shù)概念的關(guān)鍵之一,也是數(shù)學(xué)發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學(xué)生在以后學(xué)習(xí)中對某些知識進(jìn)行推廣拓展奠定了基礎(chǔ)(譬如從平面向量到空間向量的擴展,從實數(shù)到復(fù)數(shù)的擴展等)。

 。ㄇ榫4)各個比值與角之間有怎樣的關(guān)系?比值是角的函數(shù)嗎?

  追問:銳角α大小發(fā)生變化時,比值會改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化。

  引導(dǎo)學(xué)生觀察圖3,聯(lián)系相似三角形知識,探索發(fā)現(xiàn):

  對于銳角α的每一個確定值,六個比值都是

  確定的,不會隨P在終邊上的移動而變化。

  得出結(jié)論(強調(diào)):當(dāng)α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。

  設(shè)計意圖:

  初中學(xué)生對函數(shù)理解較膚淺,這里在學(xué)生思維的最近發(fā)展區(qū)進(jìn)一步研究初中學(xué)過的銳角三角函數(shù),在思維上更上了一個層次,扣準(zhǔn)函數(shù)概念的內(nèi)涵,突出變量之間的依賴關(guān)系或?qū)?yīng)關(guān)系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準(zhǔn)確理解三角函數(shù)概念的關(guān)鍵,也是在認(rèn)知上把三角函數(shù)知識納入函數(shù)知識結(jié)構(gòu)的關(guān)鍵。這樣做能夠使學(xué)生有效地增強函數(shù)觀念。

  (三)分析歸納、自主定義

 。ㄇ榫5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進(jìn)行探索和推廣:

  對于一個任意角α,它的`終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

  (指出:不畫出角的方向,表明角具有任意性)

  怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:

  (板書)設(shè)α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

  α=kππ/2時,x=0,比值y/x、r/x無意義;

  α=kπ時,y=0,比值x/y、r/y無意義。

  追問:α大小發(fā)生變化時,比值會改變嗎?

  先讓學(xué)生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化。

  再引導(dǎo)學(xué)生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化。

  綜上得到(強調(diào)):當(dāng)角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應(yīng)的多值性即誘導(dǎo)公式一留到下節(jié)課分析)。

  因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù)。

  根據(jù)歷史上的規(guī)定,對比值進(jìn)行命名,指出英文記法和讀法,記作(承前作復(fù)合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當(dāng)于函數(shù)記號f(x)。其它幾個三角函數(shù)也如此

  投影顯示圖六,指導(dǎo)學(xué)生分析其對應(yīng)關(guān)系,進(jìn)一步體會其函數(shù)內(nèi)涵:指導(dǎo)學(xué)生識記六個比值及函數(shù)名稱。

  教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學(xué)習(xí)正弦、余弦、正切三個函數(shù)的相關(guān)知識和方法,對于余切、正割、余割,只要同學(xué)們了解它們的定義就夠了(遵循大綱要求)。

  引導(dǎo)學(xué)生進(jìn)一步分析理解:

  已知角的集合與實數(shù)集之間可以建立一一對應(yīng)關(guān)系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應(yīng)著唯一的一個角,從而分別對應(yīng)著六個唯一的三角函數(shù)值。因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應(yīng)用帶來很多方便。

  設(shè)計意圖:

  把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握。明確比值存在與否的條件,為確定函數(shù)定義域作準(zhǔn)備。動畫演示比值與角之間的依賴性與確定性關(guān)系,深化理解三角函數(shù)內(nèi)涵。引導(dǎo)學(xué)生在理解的基礎(chǔ)上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務(wù)。由于學(xué)生剛學(xué)弧度制,對弧度制的理解有待于在以后的學(xué)習(xí)應(yīng)用中逐步感悟,因此部分學(xué)生對“三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)”的理解有半信半疑之感,有待通過后續(xù)的應(yīng)用加深理解。

 。ㄋ模┨剿鞫x域

  (情景6)(1)函數(shù)概念的三要素是什么?

  函數(shù)三要素:對應(yīng)法則、定義域、值域。

  正弦函數(shù)sinα的對應(yīng)法則是什么?

  正弦函數(shù)sinα的對應(yīng)法則,實質(zhì)上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應(yīng),即α→y/r=sinα。

  (2)布置任務(wù)情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:

  三角函數(shù)

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導(dǎo)學(xué)生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍。

  關(guān)于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R。

  對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}。

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎(chǔ)上記熟,cotα、cscα、secα的定義域不要求記憶。

 。P(guān)于值域,到后面再學(xué)習(xí))。

  設(shè)計意圖:

  定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域。指導(dǎo)學(xué)生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎(chǔ)上記住它、應(yīng)用它,也增進(jìn)對三角函數(shù)概念的掌握。

  (五)符號判斷、形象識記

 。ㄇ榫7)能判斷三角函數(shù)值的正、負(fù)嗎?試試看!

  引導(dǎo)學(xué)生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負(fù),根據(jù)終邊所在位置總結(jié)出形象的識記口訣:

 。ㄍ玫谜、異號得負(fù))

  sinα=y/r:上正下負(fù)橫為0cosα=x/r:左負(fù)右正縱為0tanα=y/x:交叉正負(fù)

  設(shè)計意圖:

  判斷三角函數(shù)值的正負(fù)符號,是本章教材的一項重要的知識、技能要求。要引導(dǎo)學(xué)生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負(fù)符號,并總結(jié)出形象的識記口訣,這也是理解和記憶的關(guān)鍵。

  (六)練習(xí)鞏固、理解記憶

  1、自學(xué)例1:已知角α的終邊經(jīng)過點P(2,—3),求α的六個三角函數(shù)值。

  要求:讀完題目,思考:計算什么?需要準(zhǔn)備什么?閉目心算,對照解答,模仿書面表達(dá)格式,鞏固定義。

  課堂練習(xí):

  p19題1:已知角α的終邊經(jīng)過點P(—3,—1),求α的六個三角函數(shù)值。

  要求心算,并提問中下學(xué)生檢驗

  點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標(biāo),就可以計算這個角的三角函數(shù)值(或判斷其無意義)。

  補充例題:已知角α的終邊經(jīng)過點P(x,—3),cosα=4/5,求α的其它五個三角函數(shù)值。

  師生探索:已知y=—3,要求其它五個三角函數(shù)值,須知r=?,x=?。根據(jù)定義得=(方程思想),x>0,解得x=4,解答略。

  2、自學(xué)例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2。

  提問,據(jù)反饋信息作點評、修正。

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點能使計算更簡明。

  處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義。

  強調(diào):終邊在坐標(biāo)軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值。

  設(shè)計意圖:及時安排自學(xué)例題、自做教材練習(xí)題,一般性與特殊性相結(jié)合,進(jìn)行適量的變式練習(xí),以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習(xí)活動進(jìn)行思維訓(xùn)練,把“培養(yǎng)學(xué)生分析解決問題的能力”貫穿在每一節(jié)課的課堂教學(xué)始終。

  (七)回顧小結(jié)、建構(gòu)網(wǎng)絡(luò)

  要求全體學(xué)生根據(jù)教師所提問題進(jìn)行總結(jié)識記,提問檢查并強調(diào):

  1、你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標(biāo)系,使角的頂點與坐標(biāo)原點重合,在終邊上任意取定一點P)

  2、你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義)

  3、你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標(biāo)位置)

  設(shè)計意圖:

  遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時總結(jié)識記主要內(nèi)容是上策。此處以問題形式讓學(xué)生自己歸納識記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時建構(gòu)知識網(wǎng)絡(luò),優(yōu)化知識結(jié)構(gòu),培養(yǎng)認(rèn)知能力。

 。ò耍┎贾谜n外作業(yè)

  1、書面作業(yè):習(xí)題4.3第3、4、5題。

  2、認(rèn)真閱讀p22“閱讀材料:三角函數(shù)與歐拉”,了解歐拉的生平和貢獻(xiàn),特別學(xué)習(xí)他對科學(xué)的摯著精神和堅忍不拔的頑強毅力!有興趣的同學(xué)可以上網(wǎng)查閱歐拉的相關(guān)情況。

任意角三角函數(shù)數(shù)學(xué)教案2

  教學(xué)目的:

  知識目標(biāo):1.理解三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.

  2.理解握各種三角函數(shù)在各象限內(nèi)的符號.?

  3.理解終邊相同的角的同一三角函數(shù)值相等.

  能力目標(biāo):

  1.掌握三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.

  2.掌握各種三角函數(shù)在各象限內(nèi)的符號.?

  3.掌握終邊相同的'角的同一三角函數(shù)值相等.

  授課類型:復(fù)習(xí)課

  教學(xué)模式:講練結(jié)合

  教 具:多媒體、實物投影儀

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1、三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線,各種三角函數(shù)在各象限內(nèi)的符號.誘導(dǎo)公式第一組.

  2.確定下列各式的符號

  (1)sin100°cs240° (2)sin5+tan5

  3. .x取什么值時, 有意義?

  4.若三角形的兩內(nèi)角,滿足sincs 0,則此三角形必為……( )

  A銳角三角形 B鈍角三角形 C直角三角形 D以上三種情況都可能

  5.若是第三象限角,則下列各式中不成立的是………………( )

  A:sin+cs 0 B:tansin 0

  C:csct 0 D:ctcsc 0

  6.已知是第三象限角且,問是第幾象限角?

  二、講解新課:

  1、求下列函數(shù)的定義域:

  (1) ; (2)

  2、已知 ,則為第幾象限角?

  3、(1) 若θ在第四象限,試判斷sin(csθ)cs(sinθ)的符號;

 。2)若tan(csθ)ct(sinθ)>0,試指出θ所在的象限,并用圖形表示出 的取值范圍.

  4、求證角θ為第三象限角的充分必要條件是

  證明:必要性:∵θ是第三象限角,?

  ∴

  充分性:∵sinθ<0,

  ∴θ是第三或第四象限角或終邊在y軸的非正半軸上

  ∵tanθ>0,∴θ是第一或第三象限角.?

  ∵sinθ<0,tanθ>0都成立.?

  ∴θ為第三象限角.?

  5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.

  三、鞏固與練習(xí)

  1 求函數(shù) 的值域

  2 設(shè)是第二象限的角,且 的范圍.

  四、小結(jié):

  五、課后作業(yè):

  1、利用單位圓中的三角函數(shù)線,確定下列各角的取值范圍:

  (1) sinα

  2、角α的終邊上的點P與A(a,b)關(guān)于x軸對稱 ,角β的終邊上的點Q與A關(guān)于直線=x對稱.求sinαescβ+tanαctβ+secαcscβ的值.

任意角三角函數(shù)數(shù)學(xué)教案3

  【教學(xué)目標(biāo):】

  1.通過對初中銳角三角函數(shù)定義的回憶,掌握任意角三角函數(shù)的定義法,并掌握用單位圓中的有向線段表示三角函數(shù)值.

  2.掌握已知角 終邊上一點坐標(biāo),求四個三角函數(shù)值.(即給角求值問題)

  【教學(xué)重點:】

  任意角的三角函數(shù)的定義.

  【教學(xué)難點:】

  任意角的三角函數(shù)的定義,正弦、余弦、正切這三種三角函數(shù)的幾何表示.

  【教學(xué)用具:】

  直尺、圓規(guī)、投影儀.

  【教學(xué)步驟:】

  1.設(shè)置情境

  角的范圍已經(jīng)推廣,那么對任一角 是否也能像銳角一樣定義其四種三角函數(shù)呢?本節(jié)課就來討論這一問題.

  2.探索研究

 。1)復(fù)習(xí)回憶銳角三角函數(shù)

  我們已經(jīng)學(xué)習(xí)過銳角三角函數(shù),知道它們都是以銳角 為自變量,以比值為函數(shù)值,定義了角 的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角 是一個任意角時,其三角函數(shù)的定義及其幾何表示.

 。2)任意角的三角函數(shù)定義

  如圖1,設(shè) 是任意角, 的終邊上任意一點 的坐標(biāo)是 ,當(dāng)角 在第一、二、三、四象限時的情形,它與原點的距離為 ,則 .

  定義:①比值 叫做 的正弦,記作 ,即 .

 、诒戎 叫做 的余弦,記作 ,即 .

  圖1

 、郾戎 叫做 的正切,記作 ,即 .

  同時提供顯示任意角的三角函數(shù)所在象限的課件

  提問:對于確定的角 ,這三個比值的大小和 點在角 的終邊上的位置是否有關(guān)呢?

  利用三角形相似的知識,可以得出對于角 ,這三個比值的大小與 點在角 的終邊上的位置無關(guān),只與角 的大小有關(guān).

  請同學(xué)們觀察當(dāng) 時, 的'終邊在 軸上,此時終邊上任一點 的橫坐標(biāo) 都等于0,所以 無意義,除此之外,對于確定的角 ,上面三個比值都是惟一確定的.把上面定義中三個比的前項、后項交換,那么得到另外三個定義.

 、鼙戎 叫做 的余切,記作 ,則 .

 、荼戎 叫做 的正割,記作 ,則 .

 、薇戎 叫做 的余割,記作 ,則 .

  可以看出:當(dāng) 時, 的終邊在 軸上,這時 的縱坐標(biāo) 都等于0,所以 與 的值不存在,當(dāng) 時, 的值不存在,除此之外,對于確定的角 ,比值 , , 分別是一個確定的實數(shù),所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數(shù)值的函數(shù),以上六種函數(shù)統(tǒng)稱三角函數(shù).

 。3)三角函數(shù)是以實數(shù)為自變量的函數(shù)

  對于確定的角 ,如圖2所示, , , 分別對應(yīng)的比值各是一個確定的實數(shù),因此,正弦,余弦,正切分別可看成從一個角的集合到一個比值的集合的映射,它們都是以角為自變量,以比值為函數(shù)值的函數(shù),當(dāng)采用弧度制來度量角時,每一個確定的角有惟一確定的弧度數(shù),這是一個實數(shù),所以這幾種三角函數(shù)也都可以看成是以實數(shù)為自變量,以比值為函數(shù)值的函數(shù).

  即:實數(shù)角(其弧度數(shù)等于這個實數(shù))三角函數(shù)值(實數(shù))

  (4)三角函數(shù)的一種幾何表示

  利用單位圓有關(guān)的有向線段,作出正弦線,余弦線,正切線,如下圖3.

  圖3

  設(shè)任意角 的頂點在原點 ,始邊與 軸的非負(fù)半軸重合,終邊與單位圓相交于點 ,過 作 軸的垂線,垂足為 ;過點 作單位圓的切線,這條切線必然平行于軸,設(shè)它與角 的終邊(當(dāng) 為第一、四象限時)或其反向延長線(當(dāng) 為第二、三象限時)相交于 ,當(dāng)角 的終邊不在坐標(biāo)軸上時,我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數(shù)的定義有:

  這幾條與單位圓有關(guān)的有向線段 叫做角 的正弦線、余弦線、正切線.當(dāng)角 的終邊在 軸上時,正弦線、正切線分別變成一個點;當(dāng)角 的終邊在 軸上時,余弦線變成一個點,正切線不存在.

 。5)例題講評

【任意角三角函數(shù)數(shù)學(xué)教案】相關(guān)文章:

《任意角的三角函數(shù)》教學(xué)反思04-20

銳角三角函數(shù)教學(xué)反思04-20

高中數(shù)學(xué)《三角函數(shù)》教案12-18

數(shù)學(xué)3π/2+α的三角函數(shù)誘導(dǎo)公式12-09

角初中數(shù)學(xué)教案12-30

數(shù)學(xué)教案角的度量02-08

高中數(shù)學(xué)三角函數(shù)教案(精選10篇)12-08

小學(xué)數(shù)學(xué)教案畫角02-12

高中數(shù)學(xué)三角函數(shù)公式定理記憶口訣總結(jié)05-15