欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

高一數學必修一優(yōu)秀教案

時間:2022-09-28 08:38:47 其它教案 我要投稿
  • 相關推薦

高一數學必修一優(yōu)秀教案

  在教學工作者開展教學活動前,總不可避免地需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。如何把教案做到重點突出呢?以下是小編精心整理的高一數學必修一優(yōu)秀教案,歡迎閱讀與收藏。

高一數學必修一優(yōu)秀教案

高一數學必修一優(yōu)秀教案1

  教學目標:

  1、理解集合的概念和性質。

  2、了解元素與集合的表示方法。

  3、熟記有關數集。

  4、培養(yǎng)學生認識事物的能力。

  教學重點:

  集合概念、性質

  教學難點:

  集合概念的理解

  教學過程:

  1、定義:

  集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。

  由此上述例中集合的.元素是什么?

  例(1)的元素為1、3、5、7,

  例(2)的元素為到兩定點距離等于兩定點間距離的點,

  例(3)的元素為滿足不等式3x—2> x+3的實數x,

  例(4)的元素為所有直角三角形,

  例(5)為高一·六班全體男同學。

  一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??

  為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

  (1)確定性;(2)互異性;(3)無序性。

  3、元素與集合的'關系:隸屬關系

  元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。

  集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)

  注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??

  元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

  2、“∈”的開口方向,不能把a∈A顛倒過來寫。

  注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。

  (2)非負整數集內排除0的集。記作N或N+ 。Q、Z、R等其它數集內排除0

  的集,也是這樣表示,例如,整數集內排除0的集,表示成Z

  請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關系。

高一數學必修一優(yōu)秀教案2

  一、教學目標

  1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

  2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。

  二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;

  難點:識別三視圖所表示的空間幾何體。

  三、學法指導:

  觀察、動手實踐、討論、類比。

  四、教學過程

  (一)創(chuàng)設情景,揭開課題

  展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的`效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

  (二)講授新課

  1、中心投影與平行投影:

  中心投影:光由一點向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

  長對正:正視圖與俯視圖的長相等,且相互對正;

  高平齊:正視圖與側視圖的高度相等,且相互對齊;

  寬相等:俯視圖與側視圖的寬度相等。

  3、畫長方體的三視圖:

  正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。

高一數學必修一優(yōu)秀教案3

  一、教學目標

  1.知識與技能:

  (1)通過實物操作,增強學生的直觀感知。

  (2)能根據幾何結構特征對空間物體進行分類。

  (3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

  (4)會表示有關于幾何體以及柱、錐、臺的分類。

  2.過程與方法:

  (1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。

  (2)讓學生觀察、討論、歸納、概括所學的知識。

  3.情感態(tài)度與價值觀:

  (1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。

  (2)培養(yǎng)學生的空間想象能力和抽象括能力。

  二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

  難點:柱、錐、臺、球的結構特征的概括。

  三、教學用具

  (1)學法:觀察、思考、交流、討論、概括。

  (2)實物模型、投影儀。

  四、教學過程

  (一)創(chuàng)設情景,揭示課題

  1、由六根火柴最多可搭成幾個三角形?(空間:4個)

  2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?

  3、展示具有柱、錐、臺、球結構特征的空間物體。

  問題:請根據某種標準對以上空間物體進行分類。

  (二)、研探新知

  空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;

  旋轉體(軸):圓柱、圓錐、圓臺、球。

  1、棱柱的結構特征:

  (1)觀察棱柱的幾何物體以及投影出棱柱的圖片,

  思考:它們各自的特點是什么?共同特點是什么?

  (學生討論)

  (2)棱柱的主要結構特征(棱柱的概念):

 、儆袃蓚面互相平行;

 、谄溆喔髅娑际瞧叫兴倪呅;

 、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫小

  (3)棱柱的表示法及分類:

  (4)相關概念:底面(底)、側面、側棱、頂點。

  2、棱錐、棱臺的結構特征:

  (1)實物模型演示,投影圖片;

  (2)以類似的方法,根據出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。

  棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。

  棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。

  3、圓柱的結構特征:

  (1)實物模型演示,投影圖片——如何得到圓柱?

  (2)根據圓柱的概念、相關概念及圓柱的表示。

  4、圓錐、圓臺、球的.結構特征:

  (1)實物模型演示,投影圖片

  ——如何得到圓錐、圓臺、球?

  (2)以類似的方法,根據圓錐、圓臺、球的結構特征,以及相關概念和表示。

  5、柱體、錐體、臺體的概念及關系:

  探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當底面發(fā)生變化時,它們能否互相轉化?

  圓柱、圓錐、圓臺呢?

  6、簡單組合體的結構特征:

  (1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。

  (2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。

  (3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。

  (三)排難解惑,發(fā)展思維

  1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)

  2、棱柱的何兩個平面都可以作為棱柱的底面嗎?

  3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

高一數學必修一優(yōu)秀教案4

  一、說課內容:

  蘇教版高一年級數學下冊第六章第一節(jié)的二次函數的概念及相關習題

  二、教材分析:

  1、教材的地位和作用

  這節(jié)課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節(jié)課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。

  2、教學目標和要求:

  (1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。

  (2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.

  (3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發(fā)展學生的數學思維,增強學好數學的`愿望與信心.

  3、教學重點:對二次函數概念的理解。

  4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。

  三、教法學法設計:

  1、從創(chuàng)設情境入手,通過知識再現,孕伏教學過程

  2、從學生活動出發(fā),通過以舊引新,順勢教學過程

  3、利用探索、研究手段,通過思維深入,領悟教學過程

  四、教學過程:

  (一)復習提問

  1.什么叫函數?我們之前學過了那些函數?

  (一次函數,正比例函數,反比例函數)

  2.它們的形式是怎樣的?

  (y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)

  3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k≠0的條件? k值對函數性質有什么影響?

  設計意圖復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k≠0的條件,以備與二次函數中的a進行比較.

  (二)引入新課

  函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數?聪旅嫒齻例子中兩個變量之間存在怎樣的關系。(電腦演示)

  例1、(1)圓的半徑是r(cm)時,面積s (cm)與半徑之間的關系是什么?

  解:s=πr(r>0)

  例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關系是什么?

  解: y=x(20/2-x)=x(10-x)=-x+10x (0

  例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關系是什么(不考慮利息稅)?

  解: y=100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0

  教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?

  設計意圖通過具體事例,讓學生列出關系式,啟發(fā)學生觀察,思考,歸納出二次函數與一次函數的聯(lián)系:

  (1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。

  (2)自變量的最高次數是2(這與一次函數不同)。

  (三)講解新課

  以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。

  二次函數的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。

  鞏固對二次函數概念的理解:

  1、強調“形如”,即由形來定義函數名稱。二次函數即y 是關于x的二次多項式(關于的x代數式一定要是整式)。

  2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)

  3、為什么二次函數定義中要求a≠0 ?

  (若a=0,ax2+bx+c就不是關于x的二次多項式了)

  4、在例3中,二次函數y=100x2+200x+100中, a=100, b=200, c=100.

  5、b和c是否可以為零?

  由例1可知,b和c均可為零.

  若b=0,則y=ax2+c;

  若c=0,則y=ax2+bx;

  若b=c=0,則y=ax2.

  注明:以上三種形式都是二次函數的特殊形式,而y=ax2+bx+c是二次函數的一般形式.

  設計意圖這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。

  判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.

【高一數學必修一優(yōu)秀教案】相關文章:

高一數學必修一教案02-07

高一數學必修2教案08-26

關于高一數學必修一教案09-28

高一必修二教案01-16

語文高一必修一教案10-19

高一數學必修一總結06-17

高一歷史必修二教案09-28

高一語文必修一教案01-31

人教版高一必修教案設計02-22