- 相關推薦
高一數學必修一優(yōu)秀教案
在教學工作者開展教學活動前,總不可避免地需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。如何把教案做到重點突出呢?以下是小編精心整理的高一數學必修一優(yōu)秀教案,歡迎閱讀與收藏。
高一數學必修一優(yōu)秀教案1
教學目標:
1、理解集合的概念和性質。
2、了解元素與集合的表示方法。
3、熟記有關數集。
4、培養(yǎng)學生認識事物的能力。
教學重點:
集合概念、性質
教學難點:
集合概念的理解
教學過程:
1、定義:
集合:一般地,某些指定的對象集在一起就成為一個集合(集)。元素:集合中每個對象叫做這個集合的元素。
由此上述例中集合的.元素是什么?
例(1)的元素為1、3、5、7,
例(2)的元素為到兩定點距離等于兩定點間距離的點,
例(3)的元素為滿足不等式3x—2> x+3的實數x,
例(4)的元素為所有直角三角形,
例(5)為高一·六班全體男同學。
一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??
為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(1)確定性;(2)互異性;(3)無序性。
3、元素與集合的'關系:隸屬關系
元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A。
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)
注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??
元素通常用小寫的拉丁字母表示,如a、b、c、p、q??
2、“∈”的開口方向,不能把a∈A顛倒過來寫。
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。
(2)非負整數集內排除0的集。記作N或N+ 。Q、Z、R等其它數集內排除0
的集,也是這樣表示,例如,整數集內排除0的集,表示成Z
請回答:已知a+b+c=m,A={x|ax2+bx+c=m},判斷1與A的關系。
高一數學必修一優(yōu)秀教案2
一、教學目標
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:
觀察、動手實踐、討論、類比。
四、教學過程
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的`效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
高一數學必修一優(yōu)秀教案3
一、教學目標
1.知識與技能:
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法:
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀:
(1)使學生感受空間幾何體存在于現實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。
難點:柱、錐、臺、球的結構特征的概括。
三、教學用具
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學過程
(一)創(chuàng)設情景,揭示課題
1、由六根火柴最多可搭成幾個三角形?(空間:4個)
2在我們周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?
3、展示具有柱、錐、臺、球結構特征的空間物體。
問題:請根據某種標準對以上空間物體進行分類。
(二)、研探新知
空間幾何體:多面體(面、棱、頂點):棱柱、棱錐、棱臺;
旋轉體(軸):圓柱、圓錐、圓臺、球。
1、棱柱的結構特征:
(1)觀察棱柱的幾何物體以及投影出棱柱的圖片,
思考:它們各自的特點是什么?共同特點是什么?
(學生討論)
(2)棱柱的主要結構特征(棱柱的概念):
、儆袃蓚面互相平行;
、谄溆喔髅娑际瞧叫兴倪呅;
、勖肯噜弮缮纤倪呅蔚墓策吇ハ嗥叫小
(3)棱柱的表示法及分類:
(4)相關概念:底面(底)、側面、側棱、頂點。
2、棱錐、棱臺的結構特征:
(1)實物模型演示,投影圖片;
(2)以類似的方法,根據出棱錐、棱臺的結構特征,并得出相關的概念、分類以及表示。
棱錐:有一個面是多邊形,其余各面都是有一個公共頂點的三角形。
棱臺:且一個平行于棱錐底面的平面去截棱錐,底面與截面之間的部分。
3、圓柱的結構特征:
(1)實物模型演示,投影圖片——如何得到圓柱?
(2)根據圓柱的概念、相關概念及圓柱的表示。
4、圓錐、圓臺、球的.結構特征:
(1)實物模型演示,投影圖片
——如何得到圓錐、圓臺、球?
(2)以類似的方法,根據圓錐、圓臺、球的結構特征,以及相關概念和表示。
5、柱體、錐體、臺體的概念及關系:
探究:棱柱、棱錐、棱臺都是多面體,它們在結構上有哪些相同點和不同點?三者的關系如何?當底面發(fā)生變化時,它們能否互相轉化?
圓柱、圓錐、圓臺呢?
6、簡單組合體的結構特征:
(1)簡單組合體的構成:由簡單幾何體拼接或截去或挖去一部分而成。
(2)實物模型演示,投影圖片——說出組成這些物體的幾何結構特征。
(3)列舉身邊物體,說出它們是由哪些基本幾何體組成的。
(三)排難解惑,發(fā)展思維
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱?(反例說明)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?
高一數學必修一優(yōu)秀教案4
一、說課內容:
蘇教版高一年級數學下冊第六章第一節(jié)的二次函數的概念及相關習題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學生已經學習了一次函數、正比例函數、反比例函數的基礎上,來學習二次函數的概念。二次函數是初中階段研究的最后一個具體的函數,也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數和以前學過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學習二次函數將為它們的解法提供新的方法和途徑,并使學生更為深刻的理解“數形結合”的重要思想。而本節(jié)課的二次函數的概念是學習二次函數的基礎,是為后來學習二次函數的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學目標和要求:
(1)知識與技能:使學生理解二次函數的概念,掌握根據實際問題列出二次函數關系式的方法,并了解如何根據實際問題確定自變量的取值范圍。
(2)過程與方法:復習舊知,通過實際問題的引入,經歷二次函數概念的探索過程,提高學生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數學活動加深對二次函數概念的理解,發(fā)展學生的數學思維,增強學好數學的`愿望與信心.
3、教學重點:對二次函數概念的理解。
4、教學難點:由實際問題確定函數解析式和確定自變量的取值范圍。
三、教法學法設計:
1、從創(chuàng)設情境入手,通過知識再現,孕伏教學過程
2、從學生活動出發(fā),通過以舊引新,順勢教學過程
3、利用探索、研究手段,通過思維深入,領悟教學過程
四、教學過程:
(一)復習提問
1.什么叫函數?我們之前學過了那些函數?
(一次函數,正比例函數,反比例函數)
2.它們的形式是怎樣的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函數(y=kx+b)的自變量是什么?函數是什么?常量是什么?為什么要有k≠0的條件? k值對函數性質有什么影響?
設計意圖復習這些問題是為了幫助學生弄清自變量、函數、常量等概念,加深對函數定義的理解.強調k≠0的條件,以備與二次函數中的a進行比較.
(二)引入新課
函數是研究兩個變量在某變化過程中的相互關系,我們已學過正比例函數,反比例函數和一次函數?聪旅嫒齻例子中兩個變量之間存在怎樣的關系。(電腦演示)
例1、(1)圓的半徑是r(cm)時,面積s (cm)與半徑之間的關系是什么?
解:s=πr(r>0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m)與矩形一邊長x(m)之間的關系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、設人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關系是什么(不考慮利息稅)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教師提問:以上三個例子所列出的函數與一次函數有何相同點與不同點?
設計意圖通過具體事例,讓學生列出關系式,啟發(fā)學生觀察,思考,歸納出二次函數與一次函數的聯(lián)系:
(1)函數解析式均為整式(這表明這種函數與一次函數有共同的特征)。
(2)自變量的最高次數是2(這與一次函數不同)。
(三)講解新課
以上函數不同于我們所學過的一次函數,正比例函數,反比例函數,我們就把這種函數稱為二次函數。
二次函數的定義:形如y=ax2+bx+c (a≠0,a, b, c為常數) 的函數叫做二次函數。
鞏固對二次函數概念的理解:
1、強調“形如”,即由形來定義函數名稱。二次函數即y 是關于x的二次多項式(關于的x代數式一定要是整式)。
2、在 y=ax2+bx+c 中自變量是x ,它的取值范圍是一切實數。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r>0)
3、為什么二次函數定義中要求a≠0 ?
(若a=0,ax2+bx+c就不是關于x的二次多項式了)
4、在例3中,二次函數y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數的特殊形式,而y=ax2+bx+c是二次函數的一般形式.
設計意圖這里強調對二次函數概念的理解,有助于學生更好地理解,掌握其特征,為接下來的判斷二次函數做好鋪墊。
判斷:下列函數中哪些是二次函數?哪些不是二次函數?若是二次函數,指出a、b、c.
【高一數學必修一優(yōu)秀教案】相關文章:
高一數學必修一教案02-07
高一數學必修2教案08-26
關于高一數學必修一教案09-28
高一必修二教案01-16
語文高一必修一教案10-19
高一數學必修一總結06-17
高一歷史必修二教案09-28
高一語文必修一教案01-31
人教版高一必修教案設計02-22