- 相關(guān)推薦
《勾股定理的逆定理》教案設(shè)計(jì)
一、創(chuàng)設(shè)問屬情境,引入新課
活動(dòng)1(1)總結(jié)直角三角形有哪些性質(zhì).(2)一個(gè)三角形,滿足什么條件是直角三角形?
設(shè)計(jì)意圖:通過對前面所學(xué)知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個(gè)三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問題的能力.
師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶.
本活動(dòng),教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極主動(dòng)地回憶,總結(jié)前面學(xué)過的舊知識;②能否“溫故知新”.
生:直角三角形有如下性質(zhì):(1)有一個(gè)角是直角;(2)兩個(gè)銳角互余,(3)兩直角邊的平方和等于斜邊的平方:(4)在含30°角的直角三角形中,30°的角所對的直角邊是斜邊的一半.
師:那么,一個(gè)三角形滿足什么條件,才能是直角三角形呢?
生:有一個(gè)內(nèi)角是90°,那么這個(gè)三角形就為直角三角形.
生:如果一個(gè)三角形,有兩個(gè)角的和是90°,那么這個(gè)三角形也是直角三角形.
師:前面我們剛學(xué)習(xí)了勾股定理,知道一個(gè)直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?
二、講授新課
活動(dòng)2問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個(gè)結(jié),然后以3個(gè)結(jié),4個(gè)結(jié)、5個(gè)結(jié)的長度為邊長,用木樁釘成一個(gè)三角形,其中一個(gè)角便是直角.
這個(gè)問題意味著,如果圍成的三角形的三邊分別為3、4、5.有下面的關(guān)系“32+42=52”.那么圍成的三角形是直角三角形.
畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.
設(shè)計(jì)意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動(dòng)手操作能力和尋求解決數(shù)學(xué)問題的一般方法.
師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動(dòng).教師參與此活動(dòng),并給學(xué)生以提示、啟發(fā).在本活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:①能否積極動(dòng)手參與.②能否從操作活動(dòng)中,用數(shù)學(xué)語言歸納、猜想出結(jié)論.③學(xué)生是否有克服困難的勇氣.
生:我們不難發(fā)現(xiàn)上圖中,第(1)個(gè)結(jié)到第(4)個(gè)結(jié)是3個(gè)單位長度即AC=3;同理BC=4,AB=5.因?yàn)?2+42=52.我們圍成的三角形是直角三角形.
生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.
再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.
是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個(gè)直角三角形呢?
活動(dòng)3下面的三組數(shù)分別是一個(gè)三角形的三邊長?
【《勾股定理的逆定理》教案設(shè)計(jì)】相關(guān)文章:
初中數(shù)學(xué)《勾股定理的逆定理》教案11-05
初中數(shù)學(xué)《勾股定理的逆定理》說課稿(精選10篇)12-23
逆定理04-29
勾股定理證明04-29
勾股定理教案05-30
趣談勾股定理05-02
怎么證明勾股定理04-29
【優(yōu)選】勾股定理教案07-14
勾股定理的證明方法04-29