- 相關(guān)推薦
數(shù)學(xué)一次函數(shù)知識點總結(jié)
在日復(fù)一日的學(xué)習(xí)中,相信大家一定都接觸過知識點吧!知識點就是一些?嫉膬(nèi)容,或者考試經(jīng)常出題的地方。想要一份整理好的知識點嗎?以下是小編為大家整理的數(shù)學(xué)一次函數(shù)知識點總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。
一次函數(shù)知識點
一、定義與定義式
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時稱y是x的一次函數(shù),
特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)
1.作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2.性質(zhì):
(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;
當(dāng)b=0時,直線通過原點
當(dāng)b<0時,直線必通過三、四象限,
特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用
1.當(dāng)時間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft。
六、常用公式
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:|x1-x2|/2
3.求與y軸平行線段的中點:|y1-y2|/2
4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號下(x1-x2)與(y1-y2)的平方和)
一次函數(shù)的圖象及性質(zhì)
一次函數(shù)y=kx+b的圖象是經(jīng)過(0,b)和(—b/k,0)兩點的一條直線,我們稱它為直線y=kx+b,它可以看作由直線y=kx平移|b|個單位長度得到。(當(dāng)b>0時,向上平移;當(dāng)b<0時,向下平移)
。1)解析式:y=kx+b(k、b是常數(shù),k≠0)
(2)必過點:(0,b)和(—b/k,0)
(3)走向:k>0,圖象經(jīng)過第一、三象限;
k<0,圖象經(jīng)過第二、四象限
b>0,圖象經(jīng)過第一、二象限;
b<0,圖象經(jīng)過第三、四象限
k>0,b>0;<=>直線經(jīng)過第一、二、三象限
K<0,b>0;<=>直線經(jīng)過第一、二、四象限
K<0,b<0;<=>直線經(jīng)過第二、三、四象限
(4)增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小。
(5)傾斜度:|k|越大,圖象越接近于y軸;|k|越小,圖象越接近于x軸。
。6)圖像的平移:當(dāng)b>0時,將直線y=kx的圖象向上平移b個單位;
當(dāng)b<0時,將直線y=kx的圖象向下平移b個單位。
直線y=k1x+b1與y=k2x+b2的位置關(guān)系
。1)兩直線平行:k1=k2且b1≠b2
(2)兩直線相交:k1≠k2
。3)兩直線重合:k1=k2且b1=b2
確定一次函數(shù)解析式的方法
(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)解析式;
。2)將x、y的幾對值或圖象上的幾個點的坐標(biāo)代入上述函數(shù)解析式中得到以待定系數(shù)為未知數(shù)的方程;
。3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)解析式中得出結(jié)果。
函數(shù)建模的關(guān)鍵是將實際問題數(shù)學(xué)化,從而解決最佳方案、最佳策略等問題。建立一次函數(shù)模型解決實際問題,就是要從實際問題中抽象出兩個變量,再尋求出兩個變量之間的關(guān)系,構(gòu)建函數(shù)模型,從而利用數(shù)學(xué)知識解決實際問題。
正比例函數(shù)的圖象和一次函數(shù)的圖象在賦予實際意義時,其圖象大多為線段或射線。這是因為在實際問題中,自變量的取值范圍是有一定的限制條件的,即自變量必須使實際問題有意義。從圖象中獲取的信息一般是:
。1)從函數(shù)圖象的形狀判定函數(shù)的類型;
。2)從橫、縱軸的實際意義理解圖象上點的坐標(biāo)的實際意義。解決含有多個變量的問題時,可以分析這些變量的關(guān)系,選取其中某個變量作為自變量,再根據(jù)問題的條件尋求可以反映實際問題的函數(shù)。
用函數(shù)觀點看方程(組)與不等式
一元一次方程與一次函數(shù)的關(guān)系
任何一元一次方程到可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值。從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點的橫坐標(biāo)的值。
一次函數(shù)與一元一次不等式的關(guān)系
任何一個一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(。┯0時,求自變量的取值范圍。
一次函數(shù)與二元一次方程組
。1)以二元一次方程ax+by=c的解為坐標(biāo)的點組成的圖象與一次函數(shù)y=—(a/b)x++c/b的圖象相同。
。2)二元一次方程組
a1x+b1y=c1,a2x+b2y=c2;的解可以看作是兩個一次函數(shù)y=(a1/b1)x+c1/b1和y=—(a2/b2)x+c2/b2的圖像交點。
【數(shù)學(xué)一次函數(shù)知識點總結(jié)】相關(guān)文章:
小學(xué)數(shù)學(xué)(分?jǐn)?shù))知識點總結(jié)08-03
初中物理《壓強(qiáng)》知識點總結(jié)07-31
高中化學(xué)知識點總結(jié)07-17
《鴻門宴》知識點總結(jié)05-25
小學(xué)數(shù)學(xué)研修總結(jié)05-04
初一數(shù)學(xué)教學(xué)總結(jié)03-13
小學(xué)數(shù)學(xué)個人研修總結(jié)(精選10篇)05-02
小學(xué)數(shù)學(xué)教師培訓(xùn)總結(jié)01-14