- 完全平方公式教案 推薦度:
- 相關(guān)推薦
《完全平方公式》教案
作為一名人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。教案應(yīng)該怎么寫才好呢?下面是小編幫大家整理的《完全平方公式》教案,歡迎大家分享。
《完全平方公式》教案1
一、教學(xué)目標(biāo)
。1)知識(shí)與技能;學(xué)生通過(guò)推導(dǎo)完全平方公式,掌握公式結(jié)構(gòu),能計(jì)算。
。2)過(guò)程與方法目標(biāo);學(xué)生探究完全平方公式,體會(huì)數(shù)形結(jié)合。
二、教學(xué)重點(diǎn):
公式結(jié)構(gòu)及運(yùn)用。
三、教學(xué)難點(diǎn):
公式中字母AB的含義理解與公式正確運(yùn)用。
四、教具:
自制長(zhǎng)方形、正方形卡片
五、教學(xué)過(guò)程:
活動(dòng)
學(xué)生活動(dòng)
1、創(chuàng)設(shè)情景,提出問(wèn)題,引入課題
。1)想一想
一位老人很喜歡孩子,每當(dāng)孩子到他家做客時(shí),老人都拿出糖招待他們,來(lái)了幾個(gè)孩子老人就會(huì)每個(gè)孩子幾塊糖。
。1)第一天,a個(gè)男孩去看老人,老人共給他們幾塊糖?
。2)第二天,個(gè)女孩子去看望老人,老人共給他們多少塊糖?
。3)第三天,()個(gè)孩子一起去看望老人,老人共給他們多少塊糖?
。4)第三天比前二天的孩子得到糖總數(shù)哪個(gè)多?多多少?為什么?(分組討論)
學(xué)生四人一組討論。
填空:
。1)第一天給孩子塊糖。
。2)第二天給孩子塊糖。
。3)第三天給孩子塊糖。
男孩子第三天多得塊糖
女孩第三天多得塊糖。
活動(dòng)
學(xué)生活動(dòng)
。2)做一做、請(qǐng)同學(xué)拼圖
教師巡視指導(dǎo)學(xué)生拼圖
1、教師提問(wèn):
。1)大正方形邊長(zhǎng)?(2)每一塊卡片的面積是多少?(3)用不同形式表示正方形總面積,比較發(fā)現(xiàn)什么?
2、想一想
。1)(a+b)用多項(xiàng)式乘法法則說(shuō)明
。2)(a—b)
3、請(qǐng)同學(xué)們自己敘述上面的`等式
4、說(shuō)一說(shuō),ab能表示什么?
(□+○)□+2□○+○
5、算一算
(1)(2X—3)(2)(4X+5Y)
請(qǐng)同學(xué)們分清ab
6、練一練
。1)(2X—3Y)(2)(2XY—3X)
7、試一試(a+b+c)
作業(yè):P1351、2
學(xué)生2人一組拼圖交流
2、學(xué)生觀察思考
(1)大正方形邊長(zhǎng)?
。2)四塊卡片的。面積分別是
(3)大正方形的總面積是多少?
3、(1)學(xué)生運(yùn)用多項(xiàng)式乘法法則推導(dǎo)
。╝+b)=a+2ab+b說(shuō)出每一步運(yùn)算理由
。2)學(xué)生自己探究交流
4、學(xué)生用語(yǔ)言敘述公式
5、師生共同a、b對(duì)應(yīng)項(xiàng)教師書寫
6、學(xué)生獨(dú)立完成練一練展示結(jié)果
7、學(xué)生四人一組討論交流
8、有興趣的同學(xué)可以探
《完全平方公式》教案2
教學(xué)目標(biāo):完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對(duì)算理的理解,有意識(shí)地培養(yǎng)學(xué)生的思維條理性和表達(dá)能力.
教學(xué)重點(diǎn)與難點(diǎn):完全平方公式的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用.
教學(xué)過(guò)程:
一、提出問(wèn)題,學(xué)生自學(xué)
問(wèn)題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的`運(yùn)算結(jié)果有什么規(guī)律?計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?
。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
學(xué)生討論,教師歸納,得出結(jié)果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推廣:結(jié)果中有兩個(gè)數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個(gè)數(shù)乘積的二倍(1)(2)之間只差一個(gè)符號(hào).
推廣:計(jì)算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍.
二、幾何分析:
你能根據(jù)圖(1)和圖(2)的面積說(shuō)明完全平方公式嗎?
圖(1)大正方形的邊長(zhǎng)為(a+b),面積就是(a+b)2,同時(shí),大正方形可以分成圖中①②③④四個(gè)部分,它們分別的面積為a2、ab、ab、b2,因此,整個(gè)面積為a2+ab+ab+b2=a2+2ab+b2,即說(shuō)明(a+b)2=a2+2ab+b2. 請(qǐng)點(diǎn)擊下載Word版完整教案:新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案教案《新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案》,來(lái)自網(wǎng)!
《完全平方公式》教案3
1.能根據(jù)多項(xiàng)式的乘法推導(dǎo)出完全平方公式;(重點(diǎn))
2.理解并掌握完全平方公式,并能進(jìn)行計(jì)算.(重點(diǎn)、難點(diǎn))
一、情境導(dǎo)入
計(jì)算:
(1)(x+1)2; (2)(x-1)2;
(3)(a+b)2; (4)(a-b)2.
由上述計(jì)算,你發(fā)現(xiàn)了什么結(jié)論?
二、合作探究
探究點(diǎn):完全平方公式
【類型一】 直接運(yùn)用完全平方公式進(jìn)行計(jì)算
利用完全平方公式計(jì)算:
(1)(5-a)2;
(2)(-3-4n)2;
(3)(-3a+b)2.
解析:直接運(yùn)用完全平方公式進(jìn)行計(jì)算即可.
解:(1)(5-a)2=25-10a+a2;
(2)(-3-4n)2=92+24n+16n2;
(3)(-3a+b)2=9a2-6ab+b2.
方法總結(jié):完全平方公式:(a±b)2=a2±2ab+b2.可巧記為“首平方,末平方,首末兩倍中間放”.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第12題
【類型二】 構(gòu)造完全平方式
如果36x2+(+1)x+252是一個(gè)完全平方式,求的值.
解析:先根據(jù)兩平方項(xiàng)確定出這兩個(gè)數(shù),再根據(jù)完全平方公式確定的值.
解:∵36x2+(+1)x+252=(6x)2+(+1)x+(5)2,∴(+1)x=±26x5,∴+1=±60,∴=59或-61.
方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個(gè)完全平方式.注意積的2倍的符號(hào),避免漏解.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第4題
【類型三】 運(yùn)用完全平方公式進(jìn)行簡(jiǎn)便計(jì)算
利用完全平方公式計(jì)算:
(1)992; (2)1022.
解析:(1)把99寫成(100-1)的形式,然后利用完全平方公式展開(kāi)計(jì)算.(2)可把102分成100+2,然后根據(jù)完全平方公式計(jì)算.
解:(1)992=(100-1)2=1002-2×100+12=10000-200+1=9801;
(2)1022=(100+2)2=1002+2×100×2+4=10404.
方法總結(jié):利用完全平方公式計(jì)算一個(gè)數(shù)的平方時(shí),先把這個(gè)數(shù)寫成整十或整百的數(shù)與另一個(gè)數(shù)的和或差,然后根據(jù)完全平方公式展開(kāi)計(jì)算.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第13題
【類型四】 靈活運(yùn)用完全平方公式求代數(shù)式的值
若(x+)2=9,且(x-)2=1.
(1)求1x2+12的值;
(2)求(x2+1)(2+1)的值.
解析:(1)先去括號(hào),再整體代入即可求出答案;(2)先變形,再整體代入,即可求出答案.
解:(1)∵(x+)2=9,(x-)2=1,∴x2+2x+2=9,x2-2x+2=1,4x=9-1=8,∴x=2,∴1x2+12=x2+2x22=(x+)2-2xx22=9-2×222=54;
(2)∵(x+)2=9,x=2,∴(x2+1)(2+1)=x22+2+x2+1=x22+(x+)2-2x+1=22+9-2×2+1=10.
方法總結(jié):所求的展開(kāi)式中都含有x或x+時(shí),我們可以把它們看作一個(gè)整體代入到需要求值的代數(shù)式中,整體求解.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第9題
【類型五】 完全平方公式的幾何背景
我們已經(jīng)接觸了很多代數(shù)恒等式,知道可以用一些硬紙片拼成的圖形面積來(lái)解釋一些代數(shù)恒等式.例如圖甲可以用來(lái)解釋(a+b)2-(a-b)2=4ab.那么通過(guò)圖乙面積的計(jì)算,驗(yàn)證了一個(gè)恒等式,此等式是( )
A.a(chǎn)2-b2=(a+b)(a-b)
B.(a-b)(a+2b)=a2+ab-2b2
C.(a-b)2=a2-2ab+b2
D.(a+b)2=a2+2ab+b2
解析:空白部分的面積為(a-b)2,還可以表示為a2-2ab+b2,所以,此等式是(a-b)2=a2-2ab+b2.故選C.
方法總結(jié):通過(guò)幾何圖形面積之間的數(shù)量關(guān)系對(duì)完全平方公式做出幾何解釋.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第7題
【類型六】 與完全平方公式有關(guān)的探究問(wèn)題
下表為楊輝三角系數(shù)表,它的作用是指導(dǎo)讀者按規(guī)律寫出形如(a+b)n(n為正整數(shù))展開(kāi)式的系數(shù),請(qǐng)你仔細(xì)觀察下表中的規(guī)律,填出(a+b)6展開(kāi)式中所缺的系數(shù).
(a+b)1=a+b,
(a+b)2=a2+2ab+b2,
(a+b)3=a3+3a2b+3ab2+b3,
則(a+b)6=a6+6a5b+15a4b2+________a3b3+15a2b4+6ab5+b6.
解析:由(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=a3+3a2b+3ab2+b3可得(a+b)n的各項(xiàng)展開(kāi)式的系數(shù)除首尾兩項(xiàng)都是1外,其余各項(xiàng)系數(shù)都等于(a+b)n-1的相鄰兩個(gè)系數(shù)的和,由此可得(a+b)4的'各項(xiàng)系數(shù)依次為1、4、6、4、1;(a+b)5的各項(xiàng)系數(shù)依次為1、5、10、10、5、1;因此(a+b)6的系數(shù)分別為1、6、15、20、15、6、1,故填20.
方法總結(jié):對(duì)于規(guī)律探究題,讀懂題意并根據(jù)所給的式子尋找規(guī)律,是快速解題的關(guān)鍵.
變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第10題
三、板書設(shè)計(jì)
1.完全平方公式
兩個(gè)數(shù)的和(或差)的平方,等于這兩個(gè)數(shù)的平方和加(或減)這兩個(gè)數(shù)乘積的2倍.
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
2.完全平方公式的運(yùn)用
本節(jié)課通過(guò)多項(xiàng)式乘法推導(dǎo)出完全平方公式,讓學(xué)生自己總結(jié)出完全平方公式的特征,注意不要出現(xiàn)如下錯(cuò)誤:(a+b)2=a2+b2,(a-b)2=a2-b2.為幫助學(xué)生記憶完全平方公式,可采用如下口訣:首平方,尾平方,乘積兩倍在中央.教學(xué)中,教師可通過(guò)判斷正誤等習(xí)題強(qiáng)化學(xué)生對(duì)完全平方公式的理解記憶。
《完全平方公式》教案4
一、內(nèi)容簡(jiǎn)介
本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
、偻愴(xiàng)的定義。
、诤喜⑼愴(xiàng)法則
、鄱囗(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的'過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
。ǘ┲R(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
。ㄎ澹┣楦信c態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2、采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開(kāi)教學(xué)。
3、教學(xué)評(píng)價(jià)方式:
。1)通過(guò)課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
(2)通過(guò)判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過(guò)程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
(3)通過(guò)課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
五、教學(xué)媒體:多媒體
六、教學(xué)和活動(dòng)過(guò)程:
教學(xué)過(guò)程設(shè)計(jì)如下:
〈一〉、提出問(wèn)題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=xxxxxxxxx,(-2m-3n)2=xxxxxx,(2m-3n)2=xxxxxxxxx,(-2m+3n)2=xxxxxxxxx。
〈二〉、分析問(wèn)題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,(2m-3n)2= 4m2-12mn+9n2,(-2m+3n)2= 4m2-12mn+9n2。
。1)原式的特點(diǎn)。
。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
。3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答] 總結(jié)完全平方公式的。語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問(wèn)題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=xxxxxxxxx, (m-n)2=xxxxxxxxx,(-m+n)2=xxxxxxxxx, (-m-n)2=xxxxxx,(a+3)2=xxxxxx, (-c+5)2=xxxxxx,(-7-a)2=xxxxxx, (0.5-a)2=xxxxxx.
2、判斷:
()① (a-2b)2= a2-2ab+b2
。)② (2m+n)2= 2m2+4mn+n2
。)③ (-n-3m)2= n2-6mn+9m2
。)④ (5a+0.2b)2= 25a2+5ab+0.4b2
。)⑤ (5a-0.2b)2= 5a2-5ab+0.04b2
。)⑥ (-a-2b)2=(a+2b)2
()⑦ (2a-4b)2=(4a-2b)2
。)⑧ (-5m+n)2=(-n+5m)2
3、小試牛刀
① (x+y)2 =xxxxxx;② (-y-x)2 =xxxxxxxxx;
、 (2x+3)2 =xxxxxxxxx_;④ (3a-2)2 =xxxxxxxxx;
、 (2x+3y)2 =xxxxxxxxx;⑥ (4x-5y)2 =xxxxxx;
⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =xxxxxxxxx_.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
。1)公式右邊共有3項(xiàng)。
。2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
。3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險(xiǎn)島:
。1)(-3a+2b)2=xxxxxxxxxxxxxxxxxx__
。2)(-7-2m) 2 =xxxxxxxxxxxxxxxxxx____
。3)(-0.5m+2n) 2=xxxxxxxxxxxxxxxxxx_
。4)(3/5a-1/2b) 2=xxxxxxxxxxxxxxxxxx__
(5)(mn+3) 2=xxxxxxxxxxxxxxxxxx____
。6)(a2b-0.2) 2=xxxxxxxxxxxxxxxxxx___
(7)(2xy2-3x2y) 2=xxxxxxxxxxxxxxxxxx_
。8)(2n3-3m3) 2=xxxxxxxxxxxxxxxxxx__
〈六〉、學(xué)生自我評(píng)價(jià)
[小結(jié)]通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過(guò)計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過(guò)程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)] P34隨堂練習(xí)P36習(xí)題
七、課后反思
本節(jié)課雖然算不上課本中的難點(diǎn),但在整式一章中是個(gè)重點(diǎn)。它是多項(xiàng)式乘法特殊形式下的一種簡(jiǎn)便運(yùn)算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運(yùn)算速度。授課過(guò)程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號(hào)兩邊的特點(diǎn),讓學(xué)生用語(yǔ)言表達(dá)公式的內(nèi)容,讓學(xué)生說(shuō)明運(yùn)用公式過(guò)程中容易出現(xiàn)的問(wèn)題和特別注意的細(xì)節(jié)。然后再通過(guò)逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。
《完全平方公式》教案5
本節(jié)課教學(xué)內(nèi)容分析
《完全平方公式》是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,而且公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開(kāi)端,是從一般到特殊的認(rèn)知規(guī)律的典型范例.通過(guò)對(duì)公式的學(xué)習(xí)來(lái)簡(jiǎn)化某些整式的運(yùn)算,為以后的因式分解、分式的化簡(jiǎn)、二次根式中的分母有理化、解一元二次方程、函數(shù)等內(nèi)容奠定了基礎(chǔ).因此,完全平方公式在初中階段的教學(xué)中具有很重要地位。
依據(jù)課程標(biāo)準(zhǔn)
本節(jié)課對(duì)應(yīng)的課標(biāo)要求是讓學(xué)生了解公式的幾何背景,能推導(dǎo)驗(yàn)證公式的準(zhǔn)確性,并會(huì)利用公式進(jìn)行簡(jiǎn)單計(jì)算。經(jīng)歷從“數(shù)”與“形”兩個(gè)角度解決問(wèn)題的過(guò)程,體會(huì)數(shù)形結(jié)合的思想。經(jīng)歷探究解決簡(jiǎn)單問(wèn)題的過(guò)程,提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力,發(fā)展應(yīng)用意識(shí)。
學(xué)習(xí)者特征分析
八年級(jí)的學(xué)生年齡基本都在十四歲左右,正處于活潑好動(dòng)的青春期中期。此階段的學(xué)生,個(gè)人意識(shí)增強(qiáng),渴望歸屬感和被認(rèn)同。如果課堂氣氛沉悶單調(diào),他們也會(huì)較快的感到疲勞煩躁。針對(duì)學(xué)生的心智特征及本課實(shí)際,我以“引”為主,主要采用啟發(fā)引導(dǎo),合作交流的方式展開(kāi)教學(xué),引導(dǎo)學(xué)生主動(dòng)參與到教學(xué)過(guò)程中來(lái)建構(gòu)知識(shí)。
教學(xué)策略闡述
1、問(wèn)題引入策略:通過(guò)提出問(wèn)題,激發(fā)學(xué)生學(xué)習(xí)的興趣和求知欲,創(chuàng)設(shè)寬松活潑的課堂教學(xué)氣氛,維持學(xué)生學(xué)習(xí)的動(dòng)機(jī)。
2、自主學(xué)習(xí)策略:學(xué)生通過(guò)自己觀察、思考,促進(jìn)思維的深層次加工和提高課堂參與度。
3、引導(dǎo)探究策略:學(xué)生通過(guò)小組合作,推導(dǎo)驗(yàn)證公式,充分發(fā)揮學(xué)生的主體作用。
4、類比啟發(fā)策略:在完成教學(xué)要求的基礎(chǔ)上,通過(guò)解決與生活實(shí)際緊密聯(lián)系的問(wèn)題情境,鞏固提高學(xué)生運(yùn)用公式解決生活問(wèn)題的能力。
本節(jié)課教學(xué)目標(biāo)
知識(shí)和技能:
1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力;
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;
3、了解完全平方公式的幾何背景。
過(guò)程和方法:
1、在學(xué)習(xí)的過(guò)程中使學(xué)生體會(huì)數(shù)形結(jié)合的思想;
2、經(jīng)歷公式的驗(yàn)證,進(jìn)一步發(fā)展符號(hào)感和推理能力,培養(yǎng)學(xué)生數(shù)學(xué)建模的思想。情感態(tài)度和價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹(shù)立自信心。
教學(xué)重點(diǎn)和難點(diǎn)
項(xiàng)目?jī)?nèi)容解決措施
教學(xué)重點(diǎn)完全平方公式的結(jié)構(gòu)特點(diǎn)及公式的`直接運(yùn)用在教學(xué)中逐步設(shè)置疑問(wèn),引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過(guò)程。由易到難安排例題、練習(xí),符合八年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)特點(diǎn)。課堂中,對(duì)學(xué)生激勵(lì)為主,表?yè)P(yáng)為輔,樹(shù)立其學(xué)習(xí)的自信心。師生互動(dòng)、講練結(jié)合,從而突出教學(xué)重點(diǎn)、突破教學(xué)難點(diǎn).
教學(xué)難點(diǎn)完全平方公式的應(yīng)用以及對(duì)公式中字母a、b的廣泛含義的理解與正確應(yīng)用
教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)教學(xué)過(guò)程設(shè)計(jì)教學(xué)內(nèi)容師生互動(dòng)設(shè)計(jì)意圖
活動(dòng)一:?jiǎn)栴}感知,情景切入有一種記憶游戲,游戲規(guī)則是:每次只能翻一張底牌,記憶并找出相同內(nèi)容的底牌,連續(xù)點(diǎn)出相同內(nèi)容的底牌即可消失,直至底牌全部消失就算過(guò)關(guān)。下圖是每個(gè)關(guān)卡的底牌布局,觀察并回答下列問(wèn)題:第a個(gè)關(guān)卡有xx張底牌;第b個(gè)關(guān)卡有xx張底牌;第(a+b)個(gè)關(guān)卡有xxxxx張底牌;第a個(gè)關(guān)卡的底牌數(shù)與第b個(gè)關(guān)卡的底牌數(shù)之和與第(a+b)個(gè)關(guān)卡的底牌數(shù)哪個(gè)多?多多少?
師:班班通展示問(wèn)題,層層設(shè)問(wèn),引導(dǎo)學(xué)生解決實(shí)際問(wèn)題,并關(guān)注學(xué)生情況。
生:在教師引導(dǎo)下思考并解決問(wèn)題利用生活情景引入,消除學(xué)生的陌生感,激發(fā)學(xué)生的學(xué)習(xí)興趣,體會(huì)數(shù)學(xué)來(lái)源于生活。
活動(dòng)二:深入問(wèn)題,合作探究2、計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律
。1)(p+1) =(p+1)(p+1) = xxxx;
。2)(m+2) = xxxx;
。3)(p-1) = (p-1)(p-1)=xxx;
。4)(m-2) = xxxxx.
。5)(a+b) =xxxxx;(a-b) =xxxxxxx.在教師的引導(dǎo)下,學(xué)生獨(dú)立完成解題,觀察并找出式子的規(guī)律讓學(xué)生體會(huì)到完全平方公式是乘法公式的特例,因應(yīng)用廣泛,計(jì)算簡(jiǎn)捷,故作為公式學(xué)習(xí)。
3、猜想?你是怎樣推導(dǎo)的呢?還有其他證明方法嗎?
生:用代數(shù)的方法驗(yàn)證公式的準(zhǔn)確性繼續(xù)讓學(xué)生體會(huì)到完全平方公式是乘法公式的特例化未學(xué)為已知,體會(huì)數(shù)學(xué)中的化歸思想。
活動(dòng)三:結(jié)構(gòu)分析,建構(gòu)新知4、完全平方公式:
5、分析公式的結(jié)構(gòu)特征:左邊:兩數(shù)和的平方。右邊:是一個(gè)二次三項(xiàng)式,其中兩項(xiàng)為兩數(shù)的平方和;另一項(xiàng)是兩數(shù)積的2倍,且與左邊乘式中間的符號(hào)相同。用文字語(yǔ)言敘述:兩數(shù)和的平方,等于它們的平方和加上它們積的2倍。簡(jiǎn)記:首平方,尾平方,積的2倍中間放,積的符號(hào)看前方。幾何解釋:完全平方和公式完全平方差公式
師:引導(dǎo)學(xué)生觀察公式的左右邊,進(jìn)一步挖掘公式的結(jié)構(gòu)特征教師在學(xué)生的發(fā)言過(guò)程中進(jìn)行逐步歸納。
生:用幾何的方法驗(yàn)證公式的準(zhǔn)確性學(xué)生自主學(xué)習(xí)養(yǎng)成獨(dú)立思考、分析問(wèn)題、解決問(wèn)題的習(xí)慣以形助數(shù),使學(xué)生體會(huì)數(shù)學(xué)中的數(shù)學(xué)結(jié)合思想
活動(dòng)四:范例分析,深化新知例1、用完全平方公式計(jì)算下列各題,并指出誰(shuí)可以看作公式中的a、b。
。2)仔細(xì)閱讀例1,注意以下問(wèn)題:
①每道小題分別選用了哪個(gè)完全平方公式,為什么?并能指出誰(shuí)可以看作公式中的
、诮忸}步驟.師:例題講解分析解題思路,強(qiáng)調(diào)注意事項(xiàng),規(guī)范解題格式生:及時(shí)小結(jié)讓學(xué)生學(xué)會(huì)優(yōu)化選擇
活動(dòng)五:嘗試練習(xí),拓展提升
7、下面各式的計(jì)算結(jié)果是否正確?如果不正確,應(yīng)當(dāng)怎樣改正(1)(2)(3)(4)
8、活用公式:
9、你能用幾種方法運(yùn)用完全平方公式計(jì)算(1) (2)例2、運(yùn)用完全平方公式計(jì)算:(1)102(2)99師:搶答題,看誰(shuí)的反應(yīng)快生:在搶答后小結(jié)套用公式的注意事項(xiàng)師:引導(dǎo)學(xué)生一題多解并關(guān)注學(xué)生的書寫的規(guī)范性。
生:靈活運(yùn)用公式解題及時(shí)練習(xí)鞏固應(yīng)用在例題、練習(xí)的基礎(chǔ)上變式,加深學(xué)生對(duì)所學(xué)知識(shí)的理解滲透一題多解的數(shù)學(xué)思想,發(fā)散學(xué)生數(shù)學(xué)思維。多層面多方位考察完全平方公式,加深理解。
活動(dòng)六:課堂小結(jié),歸納提高本節(jié)課你有哪些收獲完全平方公式:記憶口訣:首平方,尾平方,積的2倍中間放,積的符號(hào)看前方。注意:
a、b可以表示數(shù),單項(xiàng)式或多項(xiàng)式。
2、解題技巧:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇.
3、數(shù)學(xué)思想:體會(huì)數(shù)學(xué)中的一題多解,數(shù)形結(jié)合思想,化歸思想,整體代入思想.教師引導(dǎo)學(xué)生總結(jié)回顧學(xué)習(xí)內(nèi)容,幫助學(xué)生學(xué)習(xí)歸納反思。并關(guān)注不同層次學(xué)生對(duì)本節(jié)知識(shí)的理解、掌握程度。學(xué)生自己總結(jié),互相補(bǔ)充。通過(guò)學(xué)生的自評(píng)與反思,有助于學(xué)生養(yǎng)成整理知識(shí)的習(xí)慣,有助于學(xué)生在剛剛理解了新知識(shí)的基礎(chǔ)上,及時(shí)把知識(shí)系統(tǒng)化、條理化。同時(shí)又有利于及時(shí)調(diào)整教學(xué)策略,為下節(jié)課的教學(xué)打下伏筆。
活動(dòng)七:布置作業(yè),自我評(píng)價(jià)
1、必做題:課本第112頁(yè)
2 、3(1)(3)2、選做題:課本第112頁(yè)
3(2)(4)、4、7教師精選習(xí)題,布置作業(yè)學(xué)生課外獨(dú)立完成作業(yè)。課后作業(yè)是對(duì)課堂所學(xué)知識(shí)的鞏固,提高、延續(xù)和補(bǔ)充。
板書設(shè)計(jì)
§14.2.2完全平方公式公式口訣解題技巧例1.略例2.略練習(xí)、草稿
教學(xué)預(yù)測(cè)、反思
預(yù)測(cè):
。1)這節(jié)課倡導(dǎo)了以學(xué)生為主,教師為輔的思想,留足了一定的時(shí)間讓學(xué)生去發(fā)現(xiàn)探索、以及做練習(xí),學(xué)生學(xué)習(xí)效果明顯。
(2)采用了多媒體輔助教學(xué),以較清晰的手段呈現(xiàn)了學(xué)生整個(gè)學(xué)習(xí)過(guò)程,讓課堂更加直觀明了,同時(shí)容量也增大了。
(3)完全平方公式的直接應(yīng)用掌握還可以,公式的靈活應(yīng)用和妙用大部分學(xué)生還沒(méi)有掌握,課下加強(qiáng)聯(lián)系,多變幻題型,突破難關(guān)。反思:好的方面:不足方面:
《完全平方公式》教案6
學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)完全平方公式,并能用幾何圖形解釋公式;
2、利用公式進(jìn)行熟練地計(jì)算;
3、經(jīng)歷探索完全平方公式的推導(dǎo)過(guò)程,發(fā)展符號(hào)感,體會(huì)特殊一般特殊的認(rèn)知規(guī)律。
學(xué)習(xí)過(guò)程:
(一)自主探索
1、計(jì)算:(1)(a+b)2 (2)(a-b)2
2、你能用文字?jǐn)⑹鲆陨系?結(jié)論嗎?
(二)合作交流:
你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。
(三)試一試,我能行。
1、利用完全平方公式計(jì)算:
(1)(x+6)2 (2)(a+2b)2 (3)(3s-t)2[來(lái)源:中.考.資.源.網(wǎng)]
(四)鞏固練習(xí)
利用完全平方公式計(jì)算:
A組:
(1)( x+ y)2 (2)(-2m+5n)2
(3)(2a+5b)2 (4)(4p-2q)2
B組:
(1)( x- y2) 2 (2)(1.2m-3n)2
(3)(- a+5b)2 (4)(- x- y)2
C組:
(1)1012 (2)542 (3)9972
(五)小結(jié)與反思
我的收獲:
我的疑惑:
(六)達(dá)標(biāo)檢測(cè)
1、(a-b)2=a2+b2+ .
2、(a+2b)2= .
3、如果(x+4)2=x2+kx+16,那么k= .
4、計(jì)算:
(1)(3m- )2 (2)(x2-1)2
(2)(-a-b)2 (4)( s+ t)2
《完全平方公式》教案7
教學(xué)過(guò)程
一、議一議
探索單項(xiàng)式除以單項(xiàng)式法則(出示投影1)計(jì)算下列各題,并說(shuō)說(shuō)你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運(yùn)算,可以從兩方面思考:根據(jù)除法是乘法的逆運(yùn)算,將除法問(wèn)題轉(zhuǎn)化為乘法問(wèn)題去解決,即( )x = x y,由單項(xiàng)式乘以單項(xiàng)式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x y.學(xué)生動(dòng)筆:寫出(2)(3)題的結(jié)果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運(yùn)算是單項(xiàng)式除以單項(xiàng)式的運(yùn)算,你能說(shuō)說(shuō)如何進(jìn)行單項(xiàng)式除以單項(xiàng)式的運(yùn)算?學(xué)生活動(dòng):小組討論,教師引導(dǎo)學(xué)生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學(xué)敘述,其余同學(xué)補(bǔ)充糾正.出示單項(xiàng)式除法法則(投影顯示)單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.
二、做一做
鞏固新知例1計(jì)算1.(- x y )(3 x y) 2.(10a b c )(5a bc)3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) 學(xué)生活動(dòng):在練習(xí)本上計(jì)算.教師引導(dǎo)學(xué)生按法則進(jìn)行運(yùn)算,首先確定它們的'系數(shù),把系數(shù)的商作為商的系數(shù),其次確定相同的字母,在被除式中出現(xiàn)的字母作為商中可能含有的字母,相同字母的指數(shù)之差作為商式中對(duì)應(yīng)字母的指數(shù),只在被除式中含有的字母指數(shù)不變,最后化簡(jiǎn).第(1)(2)題對(duì)照法則進(jìn)行,第(3)題要按運(yùn)算順序進(jìn)行.第(4)題先把(2a+b)看作一個(gè)整體 (一個(gè)字母)相除,后用完全平方公式計(jì)算.教師板書如下:解: 1.(- x y )(3 x y) 2.(10a b c )(5a bc)=(- 3)x y =(105)a b c =- y =2ab c 3.(2x y) (-7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (-7xy )(14 x y ) =(2a+b) =-56x y (14 x y ) =(2a+b) =-4x y =4a +4ab+b
三、隨堂練習(xí)
P40 1學(xué)生活動(dòng):讓四名同學(xué)到黑板板演,其余同學(xué)在練習(xí)本上計(jì)算,同伴可交流,互相訂正.教師巡回檢查,對(duì)存在問(wèn)題及時(shí)更正.待四名板演同學(xué)完成后,師生共同訂正.
四、小結(jié)
本節(jié)課主要學(xué)習(xí)了單項(xiàng)式除以單項(xiàng)式的運(yùn)算.在運(yùn)用法則計(jì)算時(shí)應(yīng)注意以下幾點(diǎn):
1.系數(shù)相除與同底數(shù)冪相除的區(qū)別;
2.符號(hào)問(wèn)題;
3.指數(shù)相同的同底數(shù)冪相除商為1而不是0;4.在混合運(yùn)算中,要注意運(yùn)算的順序.五、作業(yè)課本習(xí)題1.15.P41 1、2. 3
《完全平方公式》教案8
學(xué)習(xí)目標(biāo):
1、能說(shuō)出有序數(shù)對(duì)的定義。
2、能用有序數(shù)對(duì)表示實(shí)際生活中物體的位置。
學(xué)習(xí)重點(diǎn):用有序數(shù)對(duì)表示位置。
學(xué)習(xí)難點(diǎn):用有序數(shù)對(duì)表示位置。
學(xué)習(xí)過(guò)程:
自學(xué)過(guò)程: (一)、自學(xué)知識(shí)清單
1、教材64頁(yè),在圖7.1—1中找出參加數(shù)學(xué)問(wèn)題討論的同學(xué)。
小組內(nèi)交流一下,看一看你們找的位置相同嗎?
思考:(2,4)和(4,2)在同一位置嗎?為什么?
2、請(qǐng)回答教材65頁(yè):思考題。
3、我們把這種有順序的______個(gè)數(shù)a與b組成的`_______叫做_______,記作( , )。
(二)、自學(xué)反饋
練習(xí)1、利用________________,可以準(zhǔn)確地表示出一個(gè)位置,
如電影院的座號(hào),“3排2號(hào)”、表示為(3,2),則“2排3號(hào)”可以表示為 。
練習(xí)2、如圖(1)所示,一方隊(duì)正沿箭頭所指的方向前進(jìn),A的位置為三列四行,表示為A(3,4),則B,C,D表示為B( , ),C( , )
D( , )
練習(xí)3、完成課本第65頁(yè)的練習(xí)。
練習(xí)4、用有序數(shù)對(duì)表示物體位置時(shí),(3,2)與(2,3)表示的位置相同嗎?請(qǐng)結(jié)合下面圖形加以說(shuō)明.
練習(xí)5、如圖所示,A的位置為(2,6),小明從A出發(fā),經(jīng)
(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小剛也從A出發(fā),經(jīng)
(3,6)→(4,6)→(4,7)→(5,7)→(6,7),則此時(shí)兩人相距幾個(gè)格?
《完全平方公式》教案9
課題教案:
完全平方公式
學(xué)科:
數(shù)學(xué)
年級(jí):
七年級(jí)
1內(nèi)容本節(jié)課的主題:
通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
1.1以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。使學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
1.2用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。
2教學(xué)目標(biāo)
2.1知識(shí)目標(biāo):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算;了解(a+b)2=a2+2ab+b2的幾何背景。
2.2技能目標(biāo):經(jīng)歷由一般的多項(xiàng)式乘法向乘法公式過(guò)渡的探究過(guò)程,進(jìn)一步培養(yǎng)學(xué)生歸納總結(jié)的能力,并給公式的應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ)。
2.3情感與態(tài)度目標(biāo):通過(guò)觀察、實(shí)驗(yàn)、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,感受證明的必要性、證明過(guò)程的嚴(yán)謹(jǐn)性以及結(jié)論的確定性。
3教學(xué)重點(diǎn)
完全平方公式的準(zhǔn)確應(yīng)用。
4教學(xué)難點(diǎn)
掌握公式中字母表達(dá)式的意義及靈活運(yùn)用公式進(jìn)行計(jì)算。
5教育理念和教學(xué)方式
5.1教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:本節(jié)的教學(xué)過(guò)程,要為學(xué)生的動(dòng)手實(shí)踐,自主探索與合作交流提供機(jī)會(huì),搭建平臺(tái);尊重和自己意見(jiàn)不一致的學(xué)生,贊賞每一位學(xué)生的結(jié)論和對(duì)自己的超越,尊重學(xué)生的個(gè)人感受和獨(dú)特見(jiàn)解;幫助學(xué)生發(fā)現(xiàn)他們所學(xué)東西的`個(gè)人意義和社會(huì)價(jià)值,通過(guò)恰當(dāng)?shù)慕虒W(xué)方式引導(dǎo)學(xué)生學(xué)會(huì)自我調(diào)適,自我選擇。
學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
5.2采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開(kāi)教學(xué)。充分利用動(dòng)手實(shí)踐的機(jī)會(huì),盡可能增加教學(xué)過(guò)程的趣味性,強(qiáng)調(diào)學(xué)生的動(dòng)手操作和主動(dòng)參與,通過(guò)豐富多彩的集體討論、小組活動(dòng),以合作學(xué)習(xí)促進(jìn)自主探究。
6具體教學(xué)過(guò)程設(shè)計(jì)如下:
6.1提出問(wèn)題:[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,你會(huì)計(jì)算下列各題嗎?
(x+3)2=,(x-3)2=,這些式子的左邊和右邊有什么規(guī)律?再做幾個(gè)試一試:
(2m+3n)2=,(2m-3n)2=
6.2分析問(wèn)題
6.2.1[學(xué)生回答]分組交流、討論多項(xiàng)式的結(jié)構(gòu)特點(diǎn)
。1)原式的特點(diǎn)。兩數(shù)和的平方。
。2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。等于它們平方的和,加上它們乘積的兩倍
。3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
。4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
6.2.2[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
6.2.3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
6.3運(yùn)用公式,解決問(wèn)題
6.3.1口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=,(m-n)2=,(-m+n)2=,(-m-n)2=,6.3.2小試牛刀
、(x+y)2=;②(-y-x)2=;
③(2x+3)2=;④(3a-2)2=;
6.4學(xué)生小結(jié):你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
。1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
(4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
6.5[作業(yè)]P34隨堂練習(xí)P36習(xí)題
《完全平方公式》教案10
學(xué)習(xí)目標(biāo):
1、經(jīng)歷探索完全平方公式的過(guò)程,發(fā)展學(xué)生觀察、交流、歸納、猜測(cè)、驗(yàn)證等能力。
2、會(huì)推導(dǎo)完全平方公式,了解公式的幾何背景,會(huì)用公式計(jì)算。
3、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。
學(xué)習(xí)重點(diǎn):會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
學(xué)習(xí)難點(diǎn):掌握完全平方公式的結(jié)構(gòu)特征,理解公式中a.b的廣泛含義。
學(xué)習(xí)過(guò)程:
一、學(xué)習(xí)準(zhǔn)備
1、利用多項(xiàng)式乘以多項(xiàng)式計(jì)算:(a+b)2 (a-b)2
2、這兩個(gè)特殊形式的多項(xiàng)式乘法結(jié)果稱為完全平方公式。
嘗試用自己的語(yǔ)言敘述完全平方公式:
3、完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。
4、完全平方公式的結(jié)構(gòu)特征:
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
左邊是 形式,右邊有三項(xiàng),其中兩項(xiàng)是 形式,另一項(xiàng)是
注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的.結(jié)構(gòu)特征,就可以運(yùn)用這一公式,可用符號(hào)表示為:(□±△)=□2±2□△+△2
5、兩個(gè)完全平方公式的轉(zhuǎn)化:
(a-b)2= 2=( )2+2( )+( )2=
二、合作探究
1、利用乘法公式計(jì)算:
(1) (3a+2b)2 (2) (-4x2-1)2
分析:要分清題目中哪個(gè)式子相當(dāng)于公式中的a ,哪個(gè)式子相當(dāng)于公式中的b
2、利用乘法公式計(jì)算:
(1) 992 (2) ( )2
分析:要利用完全平方公式,需具備完全平方公式的結(jié)構(gòu),所以992可以轉(zhuǎn)化( )2,( )2可以轉(zhuǎn)化為( )2
3、利用完全平方公式計(jì)算:
(1) (a+b+c)2 (2) (a-b)3
三、學(xué)習(xí)
對(duì)照學(xué)習(xí)目標(biāo),通過(guò)預(yù)習(xí),你覺(jué)得自己有哪些方面的收獲?又存在哪些方面的疑惑?
四、自我測(cè)試
1、下列計(jì)算是否正確,若不正確,請(qǐng)訂正;
(1) (-1+3a)2=9a2-6a+1
(2) (3x2- )2=9x4-
(3) (xy+4)2=x2y2+16
(4) (a2b-2)2=a2b2-2a2b+4
2、利用乘法公式計(jì)算:
(1) (3x+1)2 (2) (a-3b)2
(3) (-2x+ )2 (4) (-3m-4n)2
3、利用乘法公式計(jì)算:
(1) 9992 (2) (100.5)2
4、先化簡(jiǎn),再求值;
( m-3n)2-( m+3n)2+2,其中m=2,n=3
五、思維拓展
1、如果x2-kx+81是一個(gè)完全平方公式,則k的值是
2、多項(xiàng)式4x2+1加上一個(gè)單項(xiàng)式后,使它能成為一個(gè)整式的完全平方,那么加上的單項(xiàng)式可以是
3、已知(x+y)2=9, (x-y)2=5 ,求xy的值
4、x+y=4 ,x-y=10 ,那么xy=
5、已知x- =4,則x2+ =
《完全平方公式》教案11
教學(xué)目標(biāo)
1、使學(xué)生理解完全平方公式的意義,弄清完全平方公式的形式和特點(diǎn);使學(xué)生知道把完全平方公式反過(guò)來(lái)就可以得到相應(yīng)的.因式分解。
2、掌握運(yùn)用完全平方公式分解因式的.方法,能正確運(yùn)用完全平方公式把多項(xiàng)式分解因式(直接用公式不超過(guò)兩次)
教學(xué)方法:
對(duì)比發(fā)現(xiàn)法課型新授課教具投影儀
教師活動(dòng):
學(xué)生活動(dòng)
復(fù)習(xí)鞏固:
上節(jié)課我們學(xué)習(xí)了運(yùn)用平方差公式分解因式,請(qǐng)同學(xué)們先閱讀課本87—88頁(yè),看看你能有什么發(fā)現(xiàn)?
新課講解:
(投影)我們把形如a2+2ab+b2與a2-2ab+b2叫做完全平方式,和平方差公式一樣,我們也可以利用它把一些多項(xiàng)式因式分解。例如:
a2+8a+16=a2+2×4a+42=(a+4)2
a2-8a+16=a2-2×4a+42=(a-4)2
(要強(qiáng)調(diào)注意符號(hào))
首先我們來(lái)試一試:(投影:牛刀小試)
1.把下列各式分解因式:
(1)x2+8x+16;(2)25a4+10a2+1
(3)(m+n)2-4(m+n)+4
(教師強(qiáng)調(diào)步驟的重要性,注意發(fā)現(xiàn)學(xué)生易錯(cuò)點(diǎn),及時(shí)糾正)
2.把81x4-72x2y2+16y4分解因式
(本題用了兩次乘法公式,難度稍大,教師要鼓勵(lì)學(xué)生大膽嘗試,敢于創(chuàng)新)
將乘法公式反過(guò)來(lái)就得到多項(xiàng)式因式分解的公式。運(yùn)用這些公式把一個(gè)多項(xiàng)式分解因式的方法叫做運(yùn)用公式法。
練習(xí):第88頁(yè)練一練第1、2題
《完全平方公式》教案12
教學(xué)目標(biāo)
1、知識(shí)與技能:體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過(guò)程,了解公式的幾何背景,理解公式的本質(zhì),會(huì)應(yīng)用公式進(jìn)行簡(jiǎn)單的計(jì)算.
2、過(guò)程與方法:通過(guò)讓學(xué)生經(jīng)歷探索完全平方公式的過(guò)程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動(dòng)中獲得成功的體驗(yàn)與喜悅,樹(shù)立學(xué)習(xí)自信心.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對(duì)公式的理解,包括它的推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)、語(yǔ)言表述(學(xué)生自己的語(yǔ)言)、幾何解釋.
2、會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算.
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的'結(jié)構(gòu)特點(diǎn)及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過(guò)程
一、復(fù)習(xí)舊知、引入新知
問(wèn)題1:請(qǐng)說(shuō)出平方差公式,說(shuō)說(shuō)它的結(jié)構(gòu)特點(diǎn).
問(wèn)題2:平方差公式是如何推導(dǎo)出來(lái)的?
問(wèn)題3:平方差公式可用來(lái)解決什么問(wèn)題,舉例說(shuō)明.
問(wèn)題4:想一想、做一做,說(shuō)出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時(shí),教師可讓學(xué)生分別說(shuō)說(shuō)理由,并且不直接給出正確評(píng)價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問(wèn)題情境、探究新知
一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,因需要將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實(shí)驗(yàn)田的總面積:
、僬w看:邊長(zhǎng)為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過(guò)以上探索你發(fā)現(xiàn)了什么?
問(wèn)題1:通過(guò)以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問(wèn)題4正確的結(jié)果是什么了吧?
問(wèn)題2:如果還有同學(xué)不認(rèn)同這個(gè)結(jié)果,我們?cè)倏聪旅娴膯?wèn)題,繼續(xù)探索.(a+b)2表示的意義是什么?請(qǐng)你用多項(xiàng)式的乘法法則加以驗(yàn)證.
(教學(xué)過(guò)程中教師要有意識(shí)地提到猜想、感覺(jué)得到的不一定正確,只有再通過(guò)驗(yàn)證才能得出真知,但還是要鼓勵(lì)學(xué)生大膽猜想,發(fā)表見(jiàn)解,但要驗(yàn)證)
問(wèn)題3:你能說(shuō)說(shuō)(a+b)2=a2+2ab+b2
這個(gè)等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語(yǔ)言敘述.
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問(wèn)題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說(shuō)出(a-b)2等于什么嗎?請(qǐng)你再用多項(xiàng)式的乘法法則加以驗(yàn)證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問(wèn)題:①這兩個(gè)公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語(yǔ)言敘述這兩個(gè)公式嗎?
語(yǔ)言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來(lái)差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號(hào),得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評(píng)價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對(duì)公式完全掌握,如有學(xué)生出現(xiàn)問(wèn)題,學(xué)生、教師應(yīng)及時(shí)幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們?cè)谶\(yùn)用公式時(shí),要注意以下幾點(diǎn):
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫錯(cuò)符號(hào);
(3)可能出現(xiàn)①②這樣的錯(cuò)誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置
《完全平方公式》教案13
重點(diǎn)、難點(diǎn)根據(jù)公式的特征及問(wèn)題的特征選擇適當(dāng)?shù)墓接?jì)算.
教學(xué)過(guò)程
一、議一議
1.邊長(zhǎng)為(a+b)的正方形面積是多少?
2.邊長(zhǎng)分別為a、b拍的兩個(gè)正方形面積和是多少?
3.你能比較(1)(2)的結(jié)果嗎?說(shuō)明你的理由.師生共同討論:學(xué)生回答(1)(a+b) (2)a +b (3)因?yàn)?a+b) = a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面積比(2)中的正方形面積大.
二、做一做
例1. 利用完全平方式計(jì)算1. 102 。
2. 197 師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,且計(jì)算盡可能簡(jiǎn)便.學(xué)生活動(dòng):在練習(xí)本上演示此題.讓學(xué)生敘述
教師板書.解:1.102 =(100+2) 2.197 =(200-3) =100 +2 lOO 2+2, =200 -2 2O0 3十3 ,=10000+400+4 =40000-1200+9 =10404 =38809 例2.計(jì)算:1.(x-3) -x
2.(2a+b- )(2a-b+ )師生共同分析:1中(x-3) 可利用完全平方公式.學(xué)生動(dòng)筆解答第1題.教師根據(jù)學(xué)生解答情況,板書如下:解:1. (x-3) -x = x +6x+9-x =6x+9師問(wèn):此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,從而培養(yǎng)學(xué)生創(chuàng)新精神.學(xué)生活動(dòng):分小組討論第(2)題的解法.此題學(xué)生解答,難度較大.教師要引導(dǎo)學(xué)生使用加法結(jié)合律,為使用公式創(chuàng)造條件.學(xué)生小組交流派代表進(jìn)行全班交流.最后教師板書解題過(guò)程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b-
三、試一試
計(jì)算:
1. (a+b+c)
2. (a+b) 師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,為使用完全平方公式創(chuàng)造條件.如(a+b+c) =[a+(b+c)] 對(duì)于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動(dòng)筆:在練習(xí)本上解答,并與同伴交流你的做法.學(xué)生敘述。
教師板書.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc
四、隨堂練習(xí)
P38 1
五、小結(jié)
本節(jié)課進(jìn)一步學(xué)習(xí)了完全平方公式,在應(yīng)用此公式運(yùn)算時(shí)注意以下幾點(diǎn). 1.使用完全平方公式首先要熟記公式和公式的特征,不能出現(xiàn)(ab) = a b 的錯(cuò)誤,或(ab) = a ab+b (漏掉2倍)等錯(cuò)誤.2.要能根據(jù)公式的'特征及題目的特征靈活選擇適當(dāng)?shù)墓接?jì)算.3.用加法結(jié)合律,可為使用公式創(chuàng)造了條件.利用了這種方法,可以把多項(xiàng)式的完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方.
六、作業(yè)
課本習(xí)題1.14 P38 1、2、3.
七、教后反思
1.9 整式的除法第一課時(shí) 單項(xiàng)式除以單項(xiàng)式教學(xué)目標(biāo)1.經(jīng)歷探索單項(xiàng)式除法的法則過(guò)程,了解單項(xiàng)式除法的意義.
2.理解單項(xiàng)式除法法則,會(huì)進(jìn)行單項(xiàng)式除以單項(xiàng)式運(yùn)算.重點(diǎn)、難點(diǎn)重點(diǎn):單項(xiàng)式除以單項(xiàng)式的運(yùn)算.難點(diǎn):單項(xiàng)式除以單項(xiàng)式法則的理解.
《完全平方公式》教案14
一、教材分析
本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了多項(xiàng)式的乘法,這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)課通過(guò)學(xué)生合作學(xué)習(xí),利用多項(xiàng)式相乘法則和圖形解釋而得到完全平方公式,進(jìn)而理解和運(yùn)用完全平方公式,對(duì)以后學(xué)習(xí)因式分解,解一元二次方程都具有舉足輕重的作用。
作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。
二、學(xué)情分析
學(xué)生剛學(xué)過(guò)多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。
三、教學(xué)目標(biāo)
知識(shí)與技能
1.完全平方公式的推導(dǎo)及其應(yīng)用。
2.完全平方公式的.幾何證明。
過(guò)程與方法
經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推理能力。
情感態(tài)度與價(jià)值觀
對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。
四、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
完全平方公式的推導(dǎo)過(guò)程;結(jié)構(gòu)特點(diǎn)與公式的應(yīng)用。
教學(xué)難點(diǎn)
完全平方公式結(jié)構(gòu)特點(diǎn)及其應(yīng)用。
五、教法學(xué)法
多媒體輔助教學(xué),將知識(shí)形象化、生動(dòng)化,激發(fā)學(xué)生的興趣。教學(xué)中逐步設(shè)置疑問(wèn),引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過(guò)程。
六、教學(xué)過(guò)程設(shè)計(jì)
師生活動(dòng)
設(shè)計(jì)意圖
一.復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則
1、多項(xiàng)式與多項(xiàng)式的乘法法則內(nèi)容。
2、多項(xiàng)式與多項(xiàng)式的乘法練習(xí)。
二.講授新課
完全平方公式的推導(dǎo)
1、利用多項(xiàng)式與多項(xiàng)式的乘法法則和幾何法推導(dǎo)完全平方(和)公式
附:有簡(jiǎn)單的填空練習(xí)
2、利用多項(xiàng)式乘法則和換元法推導(dǎo)完全平方 (差)公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
二、總結(jié)完全平方公式的特點(diǎn)
介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。
三、課堂練習(xí)
1、改錯(cuò)練習(xí)
2、例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)
第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;
第二步準(zhǔn)確代入公式;
第三步化簡(jiǎn)。
計(jì)算練習(xí)
。ǎ保┱n本110頁(yè)第一題
。ǎ玻 (x-6)2 (y-5)2
四、課堂小結(jié):
1、應(yīng)用完全平方公式應(yīng)注意什么?
在解題過(guò)程中要準(zhǔn)確確定a和b,對(duì)照公式原形的兩邊, 做到不丟項(xiàng)、不弄錯(cuò)符號(hào)、2ab時(shí)不能少乘以2。
2、助記口訣
復(fù)習(xí)多項(xiàng)式與多項(xiàng)式的乘法法則為新課的學(xué)習(xí)做準(zhǔn)備。
利用不同的的方法來(lái)推導(dǎo)完全平方公式,讓學(xué)生認(rèn)知數(shù)學(xué)中的不同解題方法。
利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。
通過(guò)課堂練習(xí),使學(xué)生掌握用完全平方公式計(jì)算的步驟,加強(qiáng)學(xué)生解題的準(zhǔn)確率。
強(qiáng)調(diào)應(yīng)用完全平方公式解題的注意點(diǎn)和助記口訣,提高學(xué)生解決問(wèn)題的能力和解題的準(zhǔn)確率。
《完全平方公式》教案15
一、教材分析
完全平方公式是初中代數(shù)的一個(gè)重要組成部分,是學(xué)生在已經(jīng)掌握單項(xiàng)式乘法、多項(xiàng)式乘法及平方差公式基礎(chǔ)上的拓展,對(duì)以后學(xué)習(xí)因式分解、解一元二次方程、配方法、勾股定理及圖形面積計(jì)算都有舉足輕重的作用。
本節(jié)課是繼乘法公式的內(nèi)容的一種升華,起著承上啟下的作用。在內(nèi)容上是由多項(xiàng)式乘多項(xiàng)式而得到的,同時(shí)又為下一節(jié)課打下了基礎(chǔ),環(huán)環(huán)相扣,層層遞進(jìn)。通過(guò)這節(jié)課的學(xué)習(xí),可以培養(yǎng)學(xué)生探索與歸納能力,體會(huì)到從簡(jiǎn)單到復(fù)雜,從特殊到一般和轉(zhuǎn)化等重要的思想方法。
二、學(xué)情分析
多數(shù)學(xué)生的抽象思維能力、邏輯思維能力、數(shù)學(xué)化能力有限,理解完全平方公式的幾何解釋、推導(dǎo)過(guò)程、結(jié)構(gòu)特點(diǎn)有一定困難。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動(dòng)手操作,突出完全平方公式的探索過(guò)程,自主探索出完全平方公式的基本形式,并用語(yǔ)言表述其結(jié)構(gòu)特征,進(jìn)一步發(fā)展學(xué)生的合情推理能力、合作交流能力和數(shù)學(xué)化能力。
三、教學(xué)目標(biāo)
知識(shí)與技能
利用添括號(hào)法則靈活應(yīng)用乘法公式。
過(guò)程與方法
利用去括號(hào)法則得到添括號(hào)法則,培養(yǎng)學(xué)生的逆向思維能力。
情感態(tài)度與價(jià)值觀
鼓勵(lì)學(xué)生算法多樣化,培養(yǎng)學(xué)生多方位思考問(wèn)題的習(xí)慣,提高學(xué)生的合作交流意識(shí)和創(chuàng)新精神。
四、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
理解添括號(hào)法則,進(jìn)一步熟悉乘法公式的合理利用.
教學(xué)難點(diǎn)
在多項(xiàng)式與多項(xiàng)式的乘法中適當(dāng)添括號(hào)達(dá)到應(yīng)用公式的目的.
五、教學(xué)方法
思考分析、歸納總結(jié)、練習(xí)、應(yīng)用拓展等環(huán)節(jié)。
六、教學(xué)過(guò)程設(shè)計(jì)
師生活動(dòng)
設(shè)計(jì)意圖
一.提出問(wèn)題,創(chuàng)設(shè)情境
請(qǐng)同學(xué)們完成下列運(yùn)算并回憶去括號(hào)法則.
。1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)去括號(hào)法則:
去括號(hào)時(shí),如果括號(hào)前是正號(hào),去掉括號(hào)后,括號(hào)里的每一項(xiàng)都不改變符合;如果括號(hào)前是負(fù)號(hào),去掉括號(hào)后,括號(hào)里的各項(xiàng)都改變符合.
也就是說(shuō),遇“加”不變,遇“減”都變.
二、探究新知
把上述四個(gè)等式的'左右兩邊反過(guò)來(lái),又會(huì)得到什么結(jié)果呢?
。1) 4+5+2=4+(5+2) (2)4-5-2=4-(5+2)
。3) a+b+c =a+(b+c)(4)a-b+c=a-(b-c)
左邊沒(méi)括號(hào),右邊有括號(hào),也就是添了括號(hào),同學(xué)們可不可以總結(jié)出添括號(hào)法則來(lái)呢?
(學(xué)生分組討論,最后總結(jié))
添括號(hào)法則是:
添括號(hào)時(shí),如果括號(hào)前面是正號(hào),括到括號(hào)里的各項(xiàng)都不變符號(hào);如果括號(hào)前面是負(fù)號(hào),括到括號(hào)里的各項(xiàng)都改變符號(hào).
也是:遇“加”不變,遇“減”都變.
請(qǐng)同學(xué)們利用添括號(hào)法則完成下列練習(xí):
1.在等號(hào)右邊的括號(hào)內(nèi)填上適當(dāng)?shù)捻?xiàng):
。1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
判斷下列運(yùn)算是否正確.
。1)2a-b-=2a-(b-) (2)m-3n+2a-b=m+(3n+2a-b)
。3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
總結(jié):添括號(hào)法則是去括號(hào)法則反過(guò)來(lái)得到的,無(wú)論是添括號(hào),還是去括號(hào),運(yùn)算前后代數(shù)式的值都保持不變,所以我們可以用去括號(hào)法則驗(yàn)證所添括號(hào)后的代數(shù)式是否正確.
三、新知運(yùn)用
有些整式相乘需要先作適當(dāng)?shù)淖冃,然后再用公式,這就需要同學(xué)們理解乘法公式的結(jié)構(gòu)特征和真正內(nèi)涵.請(qǐng)同學(xué)們分組討論,完成下列計(jì)算.
例:運(yùn)用乘法公式計(jì)算
。1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
。3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
四.隨堂練習(xí):
1.課本P111練習(xí)
2.《學(xué)案》101頁(yè)——鞏固訓(xùn)練
五、課堂小結(jié):
通過(guò)本節(jié)課的學(xué)習(xí),你有何收獲和體會(huì)?
我們學(xué)會(huì)了去括號(hào)法則和添括號(hào)法則,利用添括號(hào)法則可以將整式變形,從而靈活利用乘法公式進(jìn)行計(jì)算.
我體會(huì)到了轉(zhuǎn)化思想的重要作用,學(xué)數(shù)學(xué)其實(shí)是不斷地利用轉(zhuǎn)化得到新知識(shí),比如由繁到簡(jiǎn)的轉(zhuǎn)化,由難到易的轉(zhuǎn)化,由已知解決未知的轉(zhuǎn)化等等.
六、檢測(cè)作業(yè)
習(xí)題14.2: 必做題: 3 、4 、5題
選做題:7題
知識(shí)梳理,教學(xué)導(dǎo)入,激發(fā)學(xué)生的學(xué)習(xí)熱情
交流合作,探究新知,以問(wèn)題驅(qū)動(dòng),層層深入。
歸納總結(jié),提升課堂效果。
作業(yè)檢測(cè),檢測(cè)目標(biāo)的達(dá)成情況。
【《完全平方公式》教案】相關(guān)文章:
完全平方公式教案04-25
數(shù)學(xué)教案完全平方公式12-30
完全平方公式教案設(shè)計(jì)01-24
初中數(shù)學(xué)七年級(jí)下冊(cè)數(shù)學(xué)《完全平方公式》優(yōu)秀說(shuō)課稿(通用10篇)05-22