欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

多項式除以單項式教案

時間:2023-01-03 11:39:15 教案 我要投稿
  • 相關(guān)推薦

多項式除以單項式教案

  作為一名無私奉獻(xiàn)的老師,時常需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。我們應(yīng)該怎么寫教案呢?以下是小編收集整理的多項式除以單項式教案,希望能夠幫助到大家。

多項式除以單項式教案

多項式除以單項式教案1

  教學(xué)建議

  知識結(jié)構(gòu)

  重點、難點分析

  重點是多項式除以單項式的法則及其應(yīng)用。多項式除以單項式,其基本方法與步驟是化歸為單項式除以單項式,結(jié)果仍是多項式,其項數(shù)與原多項式的項數(shù)相同。因此多項式除以單項式的運算關(guān)鍵是將它轉(zhuǎn)化為單項式除法的運算,再準(zhǔn)確應(yīng)用相關(guān)的運算法則。

  難點是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運算可知,多項式除以單項式的運算法則的實質(zhì)是把多項式除以單項式的的運算轉(zhuǎn)化為單項式的除法運算。由于,故多項式除以單項式的法則也可以看做是乘法對加法的分配律的應(yīng)用。

  教法建議

  (1)多項式除以單項式運算的實質(zhì)是把多項式除以單項式的運算轉(zhuǎn)化為單項式的除法運算,因此建議在學(xué)習(xí)本課知識之前對單項式的除法運算進(jìn)行復(fù)習(xí)鞏固。

 。2)多項式除以單項式所得商的項數(shù)與這個多項式的項數(shù)相同,不要漏項。

  (3)要熟練地進(jìn)行多項式除以單項式的運算,必須掌握它的基本運算,冪的運算性質(zhì)是整式乘除法的基礎(chǔ),只要抓住這關(guān)鍵的一步,才能準(zhǔn)確地進(jìn)行多項式除以單項式的運算。

  (4)符號仍是運算中的重要問題,用多項式的每一項除以單項式時,要注意每一項的符號和單項式的符號。

  教學(xué)設(shè)計示例

  教學(xué)目標(biāo):

  1.理解和掌握多項式除以單項式的`運算法則。

  2.運用多項式除以單項式的法則,熟練、準(zhǔn)確地進(jìn)行計算.

  3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計算能力.

  4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).

  重點、難點:

  1.多項式除以單項式的法則及其應(yīng)用.

  2.理解法則導(dǎo)出的根據(jù)。

  課時安排:

  一課時.

  教具學(xué)具:

  投影儀、膠片.

  教學(xué)過程:

  1.復(fù)習(xí)導(dǎo)入

  (l)用式子表示乘法分配律.

 。2)單項式除以單項式法則是什么?

 。3)計算:

 、

 、

  ③

 。4)填空:

  規(guī)律:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

  2.講授新課

  例1 計算:

  (1) (2)

  解:(1)原式

 。2)原式

  注意:(l)多項式除以單項式,商式與被除式的項數(shù)相同,不可丟項,如(l)中容易丟掉最后一項.

 。2)要求學(xué)生說出式子每步變形的依據(jù).

  (3)讓學(xué)生養(yǎng)成檢驗的習(xí)慣,利用乘除逆運算,檢驗除的對不對.

  例2 化簡:

  解:原式

  說明:注意弄清題中運算順序,正確運用有關(guān)法則、公式。

  練習(xí):(1)P150 1,2,。

 。2)錯例辯析:

  有兩個錯誤:第一,丟項,被除式有三項,商式只有二項,丟了最后一項1;第二項是符號上錯誤,商式第一項的符號為“-”,正確答案為 。

  3.小結(jié)

  1.多項式除以單項式的法則是什么?

  2.運用該法則應(yīng)注意什么?

  正確地把多項式除以單項式問題轉(zhuǎn)化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。

  4.作業(yè)

  P152 A組1,2。

  B組1,2。

多項式除以單項式教案2

  教學(xué)目標(biāo)

  1.了解絕對值的概念,會求有理數(shù)的絕對值;

  2.會利用絕對值比較兩個負(fù)數(shù)的大小;

  3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學(xué)生的思維能力.

  教學(xué)建議

  一、重點、難點分析

  絕對值概念?既是本節(jié)的教學(xué)重點又是教學(xué)難點。關(guān)于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負(fù)性,也就是說,任何一個有理數(shù)的絕對值都是非負(fù)數(shù),即無論a取任意有理數(shù),都有。

  教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

  二、知識結(jié)構(gòu)

  絕對值的定義絕對值的'表示方法用絕對值比較有理數(shù)的大小

  三、教法建議

  用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的.初學(xué)絕對值用語言敘述的定義,好像更便于學(xué)生記憶和運用,以后逐步改用解析式表示絕對值的定義,即在教學(xué)中,只能突出一種定義,否則容易引起混亂.可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋。

  此外,要反復(fù)提醒學(xué)生:一個有理數(shù)的絕對值不能是負(fù)數(shù),但不能說一定是正數(shù).“非負(fù)數(shù)”的概念視學(xué)生的情況,逐步滲透,逐步提出。

  四、有關(guān)絕對值的一些內(nèi)容

  1.絕對值的代數(shù)定義

  一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零

  2.絕對值的幾何定義

  在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值

  3.絕對值的主要性質(zhì)

  (2)一個實數(shù)的絕對值是一個非負(fù)數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零

  (4)兩個相反數(shù)的絕對值相等.

  五、運用絕對值比較有理數(shù)的大小

  1.兩個負(fù)數(shù)大小的比較,因為兩個負(fù)數(shù)在數(shù)軸上的位置關(guān)系是:絕對值較大的負(fù)數(shù)一定在絕對值較小的負(fù)數(shù)左邊,所以,兩個負(fù)數(shù),絕對值大的反而小

  比較兩個負(fù)數(shù)的方法步驟是:

 。1)先分別求出兩個負(fù)數(shù)的絕對值;

  (2)比較這兩個絕對值的大;

 。3)根據(jù)“兩個負(fù)數(shù),絕對值大的反而小”作出正確的判斷

  2.兩個正數(shù)大小的比較,與小學(xué)學(xué)習(xí)的方法一致,絕對值大的較大。

多項式除以單項式教案3

  教學(xué)目的:

  使學(xué)生熟練地掌握多項式除以單項式的法則,并能準(zhǔn)確地進(jìn)行運算.

  教學(xué)重點:

  多項式除以單項式的法則是本節(jié)的重點.

  教學(xué)過程:

  一、復(fù)習(xí)提問

  1.計算并回答問題:

  (1)4a3b4c÷2a2b2c;(2)(-a2b2c)÷3ab2.

  (3)以上的計算是什么運算?能否敘述這種運算的法則?

  2.計算并回答問題:

  (1)3x(x2-x+1);(2)-4a·(a2-a+2).

  (3)以上的計算是什么運算?能否敘述這種運算的法則?

  3.請同學(xué)利用2、3、6其間的數(shù)量關(guān)系,寫出僅含以上三個數(shù)的等式.

  說明:希望學(xué)生能寫出

  2×3=6,(2的3倍是6)

  3×2=6,(3的2倍是6)

  6÷2=3,(6是2的3倍)

  6÷3=2.(6是3的2倍)

  然后向大家指明,以上四個式子所表示的三個數(shù)間的關(guān)系是相同的,只是表示的角度不同,讓學(xué)生理解被除式、除式與商式間的關(guān)系.

  二、新課

  1.新課引入.

  對照整式乘法的學(xué)習(xí)順序,下面我們應(yīng)該研究整式除法的什么內(nèi)容?在學(xué)生思考的基礎(chǔ)上,點明本節(jié)的主題,并板書標(biāo)題.

  2.法則的推導(dǎo).

  引例:(8x3-12x2+4x)÷4x=(?)

  分析:

  利用除法是乘法的逆運算的規(guī)定,我們可將上式化為

  4x · ( ? ) =8x3-12x2+4x.

  原乘法運算: 乘式 乘式 積

  (現(xiàn)除法運算):(除式) (待求的商式) (被除式)

  然后充分利用單項式乘多項式的運算法則,引導(dǎo)學(xué)生對“待求的商式”做大膽的猜測:大體上可以從結(jié)構(gòu)(應(yīng)是單項式還是多項式)、項數(shù)、各項的符號能否確定、各具體的.項能否“猜”出幾方面去思考.根據(jù)課上學(xué)生領(lǐng)悟的情況,考慮是否由學(xué)生完成引例的解答.

  解:(8x3-12x2+4x)÷4x

  =8x3÷4x-12x2÷4x+4x÷4x

  =2x2-3x+4x.

  思考題:(8x3-12x2+4x)÷(-4x)=?

  以上的思想,可以概括為“法則”:

  (am+mb+cm)÷m=am÷m+bc÷m+cm÷m

  法則的語言表達(dá)是:

  多項式除以單項式,先把這個多項式的每

  一項除以這個單項式,再把所得的商相加.

  3.鞏固法則.

  例1 計算:

  (1)(28a3-14a2+7a)÷7a;

  (2)(36x4y3-24x3y2+3x2y2)÷(-6x2y).

  小結(jié):

  (1)當(dāng)除式的系數(shù)為負(fù)數(shù)時,商式的各項符號與被除多項式各項的符號相反,要特別注意;

  (2)多項式除以單項式是利用相應(yīng)法則,轉(zhuǎn)化為單項式除以單項式而求得結(jié)果的.

  (3)在學(xué)習(xí)、鞏固新的法則階段,應(yīng)盡量要求學(xué)生寫出表現(xiàn)法則的那一步.

  本節(jié)是學(xué)習(xí)多項式與單項式的除法,因此對于單項式除以單項式的計算則可以從簡.

  練習(xí)

  1.計算:

  (1)(6xy+5x)÷x;(2)(15x2y-10xy2)÷5xy;

  (3)(8a2b-4ab2)÷4ab;(4)(4c2d+c3d3)÷(-2c2d).

  例2 化簡[(2x+y)2-y(y+4x)-8x]÷2x.

  解:[(2x+y)2-y(y+4x)-8x]÷2x

  =(4x2+4xy+y2-y2-4xy-8x)÷2x

  =(4x2-8x)÷2x=2x-4.

  三、小結(jié)

  1.多項式除以單項式的法則寫成下面的形式是否正確?

  (a+b+c)÷m=a÷m+b÷m+c÷m.

  答:上面的等式也反映出多項式除以單項式的基本方法(兩個要點):

  (1)多項式的每一項除以單項式;

  (2)所得的商相加.

  所以它也可以是多項式除以單項式法則的數(shù)字表示形成.

  學(xué)習(xí)了負(fù)指數(shù)之后,我們可以理解a、b、c是否能被m整除不是關(guān)鍵問題.

  2.多項式除以單項式的商在項數(shù)與各項的符號與什么式子有聯(lián)系?有何聯(lián)系?

  教后記:

【多項式除以單項式教案】相關(guān)文章:

教案:單項式與單項式相乘12-17

教案-小數(shù)除以整數(shù)12-17

教案 分?jǐn)?shù)除以整數(shù)12-16

14.1.4整式的乘法--單項式乘以單項式11-04

冪等矩陣的多項式的極小多項式的算法12-12

多項式環(huán)中的Fermat定理12-11

紐結(jié)的瓊斯多項式性質(zhì)12-13

一個數(shù)除以小數(shù)教案03-06

除以2的故事作文11-10