欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

小學數(shù)學知識點總結

時間:2024-09-05 10:47:29 總結 我要投稿

小學數(shù)學集合知識點總結

  在平平淡淡的學習中,是不是聽到知識點,就立刻清醒了?知識點在教育實踐中,是指對某一個知識的泛稱。哪些才是我們真正需要的知識點呢?下面是小編為大家收集的小學數(shù)學集合知識點總結,僅供參考,希望能夠幫助到大家。

小學數(shù)學集合知識點總結

  小學數(shù)學知識點總結1

  一、學習目標:

  1.知道生活中有比萬大的數(shù);認識計數(shù)單位“萬、十萬、百萬、千萬和億”,類推每相鄰兩個計數(shù)單位之間的關系,知道數(shù)級、數(shù)位;

  2使學生認識射線,直線,能識別射線、直線和線段三個概念之間的聯(lián)系和區(qū)別;認識角和角的表示方法,知道角的各部分名稱;

  3,在理解的基礎上,掌握整數(shù)乘法的口算方法;培養(yǎng)類推遷移的能力和口算的能力;

  4.結合生活情境,通過自主探究活動,初步認識平行線、垂線;獨立思考能力與合作精神得到和諧發(fā)展;

  5.在理解的基礎上,掌握用整十數(shù)除商是一位數(shù)的口算方法;培養(yǎng)類推遷移的能力和抽象概括的能力。

  二、學習難點:

  1.認識計數(shù)單位“萬、十萬、百萬、千萬和億”;掌握每相鄰兩個計數(shù)單位之間的關系;

  2.角的意義;射線、直線和線段三者之間的關系;

  3.掌握整數(shù)乘法的.口算方法;培養(yǎng)學生養(yǎng)成認真思考的良好學習習慣;

  4.初步認識平行線與垂線;理解永不相交的含義;

  5.掌握用整十數(shù)除商是一位數(shù)的口算方法;培養(yǎng)學生養(yǎng)成認真計算的良好學習習慣。

  三、知識點概括總結:

  1.億以內的數(shù)的認識:

  十萬:10個一萬;

  一百萬:10個十萬;

  一千萬:10個一百萬;

  一億:10個一千萬。

  2.數(shù)級:數(shù)級是為便于人們記讀阿拉伯數(shù)的一種識讀方法,在位值制(數(shù)位順序)的基礎上,以三位或四位分級的原則,把數(shù)讀,寫出來。

  通常在阿拉伯數(shù)的書寫上,以小數(shù)點或者空格作為各個數(shù)級的標識,從右向左把數(shù)分開。

  3.數(shù)級分類:

  (1)四位分級法:即以四位數(shù)為一個數(shù)級的分級方法。

  我國讀數(shù)的習慣,就是按這種方法讀的。如:萬(數(shù)字后面4個0)、億(數(shù)字后面8個0)、兆(數(shù)字后面12個0,這是中法計數(shù))……。這些級分別叫做個級,萬級,億級……。

  (2)三位分級法:即以三位數(shù)為一個數(shù)級的分級方法。

  這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數(shù)字后面3個0、百萬,數(shù)字后面6個0、十億,數(shù)字后面9個0……。

  4.數(shù)位:數(shù)位是指寫數(shù)時,把數(shù)字并列排成橫列,一個數(shù)字占有一個位置,這些位置,都叫做數(shù)位。

  從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。

  這就說明計數(shù)單位和數(shù)位的概念是不同的。

  5.數(shù)的產生:

  阿拉伯數(shù)字的由來:古代印度人創(chuàng)造了阿拉伯數(shù)字后,大約到了公元7世紀的時候,這些數(shù)字傳到了阿拉伯地區(qū)。到13世紀時,意大利數(shù)學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數(shù)字做了詳細的介紹。后來,這些數(shù)字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數(shù)字是從阿拉伯地區(qū)傳入的,所以便把這些數(shù)字叫做阿拉伯數(shù)字。以后,這些數(shù)字又從歐洲傳到世界各國。

  阿拉伯數(shù)字傳入我國,大約是13到14世紀。由于我國古代有一種數(shù)字叫“籌碼”,寫起來比較方便,所以阿拉伯數(shù)字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數(shù)學成就的吸收和引進,阿拉伯數(shù)字在我國才開始慢慢使用,阿拉伯數(shù)字在我國推廣使用才有100多年的歷史。阿拉伯數(shù)字現(xiàn)在已成為人們學習、生活和交往中最常用的數(shù)字了。

  小學數(shù)學知識點總結2

  1、已經學過的面積單位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公頃、平方千米(km2)。

  2、(1)邊長是1厘米的正方形,面積是1平方厘米。

  (2)邊長是1分米的正方形,面積是1平方分米。

  (3)邊長是1米的正方形,面積是1平方米。

  (4)邊長是100米的正方形,面積是1公頃。1公頃=10000平方米

  測量土地的面積,可以用公頃作單位。

  例如:鳥巢的占地面積約1公頃。400跑道圍起來的部分的'面積大約是1公頃。

  (5)邊長是1000米的正方形,面積是1平方千米。

  1平方千米=100公頃=1000000平方米

  我國陸地領土面積約為960萬平方千米。

  3、面積單位之間的換算:

  (1)首先要記住它們之間的進率:

  1平方千米=100公頃=1000000平方米

  1公頃=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方米=10000平方厘米

  (2)換算方法:

  ○1把高級單位化為低級單位,要用乘法計算,只要用高級單位前面的數(shù)去乘這兩個單位之間的進率。(即高化低,乘進率,小數(shù)點向右移,移幾位,看進率。)

  ○2把低級單位聚成高低級單位,要用除法計算,只要用低級單位前面的數(shù)去除以這兩個單位之間的進率。(即低化高,除以進率,小數(shù)點向左移,移幾位,看進率。)

  a、把公頃轉化為平方米,只要在公頃前面的數(shù)據(jù)后面直接添寫4個0。

  b、把平方米轉化為公頃,只要在平方米前面的數(shù)據(jù)后面直接去掉4個0。

  c、把平方千米轉化為公頃,只要在平方千米前面的數(shù)據(jù)后面直接添寫2個0。

  d、把平方千米轉化為平方米,只要在平方千米前面的數(shù)據(jù)后面直接添寫6個0。

  e、把平方米轉化為平方千米,只要在平方米前面的數(shù)據(jù)后面直接去掉6個0。

  4、填寫面積單位的規(guī)律:

  (1)國土面積、省份(含直轄市)面積、省會城市面積、州(市)面積、縣、鄉(xiāng)鎮(zhèn)面積、村委會、村莊面積、一般要用“平方千米”作單位。

  (2)公園、院(校)園、體育場(館)等,一般要用“公頃”作單位。

  (3)房屋(建筑)面積、教室面積、校園綠化面積等,一般要用“平方米”作單位。

  小學數(shù)學知識點總結3

  角:

 。1)角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。

  這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

 。2)角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。

  所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

  角的符號:∠

  角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。

  在動態(tài)定義中,取決于旋轉的方向與角度。

  角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。

  以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

 。1)銳角:大于0°,小于90°的角叫做銳角。

  (2)直角:等于90°的角叫做直角。

  (3)鈍角:大于90°而小于180°的角叫做鈍角。

  乘法:

  乘法是指一個數(shù)或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。

  乘法算式中各數(shù)的名稱:

  “×”是乘號,乘號前面和后面的數(shù)叫做因數(shù),“=”是等于號,等于號后面的數(shù)叫做積。

  例:10(因數(shù))×(乘號)200(因數(shù))=(等于號)2000(積)

  平行:

  在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。

  垂直:

  兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。

  平行四邊形:

  在同一平面內有兩組對邊分別平行的`四邊形叫做平行四邊形。

  梯形:

  梯形是指一組對邊平行而另一組對邊不平行的四邊形。

  平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。

  除法:

  除法法則:除數(shù)是幾位,先看被除數(shù)的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數(shù)要比除數(shù)小,如果商是小數(shù),商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除數(shù)是小數(shù),要化成除數(shù)是整數(shù)的除法再計算。

  小學數(shù)學知識點總結4

  1、用豎式計算兩位數(shù)加法時:①相同數(shù)位對齊,加號寫在高位下行之前。

 、谟贸咦赢嫏M線。

 、蹚膫位加起

 、苋绻麄位滿10,向十位進1,寫在個位、十位之間,

  不進位不寫1

  用豎式計算兩位數(shù)減法時:

  ①相同數(shù)位對齊,減號寫在高位下行之前。

  ②用尺子畫橫線。

 、蹚膫位減起

 、苋绻麄位不夠減,從十位退1,到個位作10再減(借一要在頭上寫點),計算時十位要記得減去退掉的1。不借位不寫點

 、莸脭(shù)寫在橫式上

  2、估算:把一個接近整十整百的數(shù)看作整十整百來計算。

  方法:個位小于5的少看,個位等于或大于5的多看,看成最為接近的整十或整百數(shù)!八纳嵛迦搿

  如:49+42≈9028+45+24≈10098—17≈80

  50 4030 50 20100 20更深一步的估計是能夠估出比80大

  注:當問題里出現(xiàn)“大約”兩個字時,就需要估算。

  3、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算,用“比”字兩邊的較大數(shù)減去較小數(shù)。

  4、多幾、少幾已知的問題。比誰少幾,就用誰減去幾;未知數(shù)比誰多幾,就用誰加上幾。

  方法:

  ①根據(jù)已知,判斷出與要求的未知,誰多誰少;

 、谇蠖嗟挠眉臃,求少的用減法。

  基數(shù)和序數(shù)的區(qū)別

  一、意思不同

  基數(shù)是集合論中刻畫任意集合大小的`一個概念。兩個能夠建立元素間一一對應的集合稱為互相對等集合。例如3個人的集合和3匹馬的集合可以建立一一對應,是兩個對等的集合。序數(shù)是在基數(shù)的基礎上再增加一層意思。

  二、用處不同

  基數(shù)可以比較大小,可以進行運算。

  例如:

  設|A|=a,|B|=β,定義a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a與β的積規(guī)定為|AxB|,A×B為A與B的笛卡兒積。

  序數(shù),漢語表示序數(shù)的方法較多。通常是在整數(shù)前加“第”,如:第一,第二。也有單用基數(shù)的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。

  三、寫法

  基數(shù):1、2、3

  序數(shù):第1、第2、第3

  數(shù)與計算知識點

  1、分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。

  2、分數(shù)乘法的計算法則:分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零。

  3、分數(shù)乘法意義分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。

  4、分數(shù)乘整數(shù):數(shù)形結合、轉化化歸

  5、倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。

  小學數(shù)學知識點總結5

  (一)分數(shù)乘法意義:

  1、分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。

  “分數(shù)乘整數(shù)”指的是第二個因數(shù)必須是整數(shù),不能是分數(shù)。

  2、一個數(shù)乘分數(shù)的意義就是求一個數(shù)的幾分之幾是多少。

  “一個數(shù)乘分數(shù)”指的是第二個因數(shù)必須是分數(shù),不能是整數(shù)。(第一個因數(shù)是什么都可以)

  (二)分數(shù)乘法計算法則:

  1、分數(shù)乘整數(shù)的計算方法:用分子乘整數(shù)的積作分子,分母不變。能約分的可以先約分,再計算。

  (1)為了計算簡便能約分的可先約分再計算。(整數(shù)和分母約分)

  (2)約分是用整數(shù)和下面的分母約掉公因數(shù)。(整數(shù)千萬不能與分母相乘,計算結果必須是最簡分數(shù))。

  2、分數(shù)乘分數(shù)的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)

  (1)如果分數(shù)乘法算式中含有帶分數(shù),要先把帶分數(shù)化成假分數(shù)再計算。

  (2)分數(shù)化簡的方法是:分子、分母同時除以它們的公因數(shù)。

  (3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數(shù)先劃去,再分別在它們的上、下方寫出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計算后的結果才是最簡單分數(shù))。

  (4)分數(shù)的基本性質:分子、分母同時乘或者除以一個相同的數(shù)(0除外),分數(shù)的大小不變。

  (三)積與因數(shù)的關系:

  一個數(shù)(0除外)乘大于1的數(shù),積大于這個數(shù)。a×b=c,當b>1時,c>a。

  一個數(shù)(0除外)乘小于1的數(shù),積小于這個數(shù)。a×b=c,當b<1時,c

  一個數(shù)(0除外)乘等于1的數(shù),積等于這個數(shù)。a×b=c,當b=1時,c=a。

  在進行因數(shù)與積的大小比較時,要注意因數(shù)為0時的特殊情況。

  (四)分數(shù)混合運算

  1、分數(shù)混合運算的運算順序與整數(shù)混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的',再算括號外面的。

  2、整數(shù)乘法運算定律對分數(shù)乘法同樣適用;運算定律可以使一些計算簡便。

  乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分數(shù)乘法應用題——用分數(shù)乘法解決問題

  1、求一個數(shù)的幾分之幾是多少?(用乘法)

  已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數(shù)相乘。

  2、巧找單位“1”的量:在含有分數(shù)(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。

  3、求比一個數(shù)多(或少)幾分之幾的數(shù)是多少的解題方法

  (1)單位“1”的量+(-)單位“1”的量×這個數(shù)量比單位“1”的量多(或少)的幾分之幾=這個數(shù)量;

  (2)單位“1”的量×[1+這個數(shù)量比單位“1”的量多(或少)的幾分之幾]=這個數(shù)量。

  小學數(shù)學知識點總結6

  1.根據(jù)方向和距離可以確定物體在平面圖上的位置。

  2.在平面圖上標出物體位置的方法:

  先用量角器確定方向,再以選定的單位長度為基準用直尺確定圖上距離,最后找出物體的具體位置,并標上名稱。

  3.描述路線圖時,要先按行走路線確定每一個參照點,然后以每一個參照點建立方向標,描述到下一個目標所行走的方向和路程,即每一步都要說清是從哪兒走,向什么方向走了多遠到哪兒。

  4.繪制路線圖的.方法:

  (1)確定方向標和單位長度。

  (2)確定起點的位置。

  (3)根據(jù)描述,從起點出發(fā),找好方向和距離,一段一段地畫。除第一段(以起點為參照點)外,其余每一段都要以前一段的終點為參照點。

  (4)以誰為參照點,就以誰為中心畫出“十”字方向標,然后判斷下一地點的方向和距離。

  小學數(shù)學知識點總結7

  一、圓的特征

  1、圓是平面內封閉曲線圍成的平面圖形。

  2、圓的特征:外形美觀,易滾動。

  3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。

  圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。

  半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。

  直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數(shù)條直徑,且所有的直徑都相等。直徑是圓內最長的線段。

  同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2

  4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。

  5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。

  有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

  有二條對稱軸的圖形:長方形

  有三條對稱軸的圖形:等邊三角形

  有四條對稱軸的圖形:正方形

  有無條對稱軸的圖形:圓,圓環(huán)

  6、畫圓

  (1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。

  二、圓的周長:

  圍成圓的`曲線的長度叫做圓的周長,周長用字母C表示。

  1、圓的周長總是直徑的三倍多一些。

  2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。

  即:圓周率π=周長÷直徑≈3.14

  所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr

  圓周率π是一個無限不循環(huán)小數(shù),3.14是近似值。

  3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數(shù)與半徑、直徑擴大的倍數(shù)相同。

  4、半圓周長=圓周長一半+直徑=πr+d

  三、圓的面積s

  1、圓面積公式的推導

  如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數(shù)越多拼成的圖像越接近長方形。

  圓的半徑=長方形的寬

  圓的周長的一半=長方形的長

  長方形面積=長×寬

  所以:圓的面積=圓的周長的一半(πr)×圓的半徑(r)

  S圓=πr×r=πr2

  2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。

  周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。

  3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數(shù)是半徑、直徑擴大的倍數(shù)的平方倍。

  4、環(huán)形面積=大圓–小圓=πR2-πr2

  扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))

  5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

  一個圓的半徑增加a厘米,周長就增加2πa厘米。

  一個圓的直徑增加b厘米,周長就增加πb厘米。

  6、任意一個正方形的內切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。

  7、常用數(shù)據(jù)

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

  小學數(shù)學知識點總結8

  一、百分數(shù)的意義:

  表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù)。百分數(shù)又叫百分比或百分率,百分數(shù)不能帶單位。

  注意:百分數(shù)是專門用來表示一種特殊的倍比關系的,表示兩個數(shù)的比。

  1、百分數(shù)和分數(shù)的區(qū)別和聯(lián)系:

  (1)聯(lián)系:都可以用來表示兩個量的倍比關系。

  (2)區(qū)別:意義不同:百分數(shù)只表示倍比關系,不表示具體數(shù)量,所以不能帶單位。分數(shù)不僅表示倍比關系,還能帶單位表示具體數(shù)量。百分數(shù)的分子可以是小數(shù),分數(shù)的分子只可以是整數(shù)。

  注意:百分數(shù)在生活中應用廣泛,所涉及問題基本和分數(shù)問題相同,分母是100的分數(shù)并不是百分數(shù),必須把分母寫成“%”才是百分數(shù),所以“分母是100的分數(shù)就是百分數(shù)”這句話是錯誤的`!%”的兩個0要小寫,不要與百分數(shù)前面的數(shù)混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小數(shù)、分數(shù)、百分數(shù)之間的互化

  (1)百分數(shù)化小數(shù):小數(shù)點向左移動兩位,去掉“%”。

  (2)小數(shù)化百分數(shù):小數(shù)點向右移動兩位,添上“%”。

  (3)百分數(shù)化分數(shù):先把百分數(shù)寫成分母是100的分數(shù),然后再化簡成最簡分數(shù)。

  (4)分數(shù)化百分數(shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分數(shù)。

  (5)小數(shù)化分數(shù):把小數(shù)成分母是10、100、1000等的分數(shù)再化簡。

  (6)分數(shù)化小數(shù):分子除以分母。

  二、百分數(shù)應用題

  1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數(shù)是另一個數(shù)的百分之幾。

  2、求一個數(shù)比另一個數(shù)多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。

  求甲比乙多百分之幾:(甲-乙)÷乙

  求乙比甲少百分之幾:(甲-乙)÷甲

  3、求一個數(shù)的百分之幾是多少。一個數(shù)(單位“1”)×百分率

  4、已知一個數(shù)的百分之幾是多少,求這個數(shù)。

  部分量÷百分率=一個數(shù)(單位“1”)

  5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

  折扣、成數(shù)=幾分之幾、百分之幾、小數(shù)

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八點五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半價

  6、利率

  (1)存入銀行的錢叫做本金。

  (2)取款時銀行多支付的錢叫做利息。

  (3)利息與本金的比值叫做利率。

  利息=本金×利率×時間

  稅后利息=利息-利息的應納稅額=利息-利息×5%

  注:國債和教育儲蓄的利息不納稅

  7、百分數(shù)應用題型分類

  (1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

  (2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

  小學數(shù)學知識點總結9

  (一)口算除法

  1、整十數(shù)除整十數(shù)或幾百幾十的數(shù)的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表內除法計算。利用除法運算的性質:將被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù),商不變。如:200÷50想20÷5=4,所以200÷50=4。

  2、兩位數(shù)除兩位數(shù)或三位數(shù)的估算方法:除法估算一般是把算式中不是整十數(shù)或幾百幾十的數(shù)用“四舍五入”法估算成整十數(shù)或幾百幾十的數(shù),再進行口算。注意結果用“≈”號。

  (二)筆算除法

  1、除數(shù)是兩位數(shù)的筆算除法計算方法:從被除數(shù)的'高位除起,先用除數(shù)試除被除數(shù)的前兩位,如果前兩位數(shù)比除數(shù)小,就看前三位。除到被除數(shù)的哪一位,商就寫在那一位的上面。每次除后余下的數(shù)必須比除數(shù)小。

  2、除數(shù)不是整十數(shù)的兩位數(shù)的除法的試商方法:如果除數(shù)是一個接近整十數(shù)的兩位數(shù),就用“四舍五入”法把除數(shù)看做與它接近的整十數(shù)試商,也可以把除數(shù)看做與它接近的幾十五,再利用一位數(shù)的乘法直接確定商。

  3、商一位數(shù):

  (1)兩位數(shù)除以整十數(shù),如:62÷30;

  (2)三位數(shù)除以整十數(shù),如:364÷70

  (3)兩位數(shù)除以兩位數(shù),如:90÷29(把29看做30來試商)

  (4)三位數(shù)除以兩位數(shù),如:324÷81(把81看做80來試商)

  (5)三位數(shù)除以兩位數(shù),如:104÷26(把26看做25來試商)

  (6)同頭無除商八、九,如:404÷42(被除數(shù)的位和除數(shù)的位一樣,即“同頭”,被除數(shù)的前兩位除以除數(shù)不夠除,即“無除”,不是商8就是商9。)

  (7)除數(shù)折半商四五,如:252÷48(除數(shù)48的一半24,和被除數(shù)的前兩位25很接近,不是商4就是商5。)

  4、商兩位數(shù):(三位數(shù)除以兩位數(shù))

  (1)前兩位有余數(shù),如:576÷18

  (2)前兩位沒有余數(shù),如:930÷31

  5、判斷商的位數(shù)的方法:

  被除數(shù)的前兩位除以除數(shù)不夠除,商是一位數(shù);被除數(shù)的前兩位除以除數(shù)夠除,商是兩位數(shù)。

  (三)商的變化規(guī)律

  1、商變化:

  (1)被除數(shù)不變,除數(shù)乘(或除以)幾(0除外),商就除以(或乘)相同的數(shù)。

  (2)除數(shù)不變,被除數(shù)乘(或除以)幾(0除外)商也乘(或除以)相同的數(shù)。

  2、商不變:被除數(shù)和除數(shù)同時乘(或除以)相同的數(shù)(0除外),商不變。

  (四)簡便計算:同時去掉同樣多的0,如9100÷700=91÷7=13

  小學數(shù)學知識點總結10

  第一章————除法

  1、用乘法口訣做除法,余數(shù)一定要比除數(shù);

  2、應用題中,除數(shù)和余數(shù)的單位不一樣;

  商的單位是問題的單位,余數(shù)的單位和被除數(shù)的單位相同;

  3、解決生活問題,如提的問題是“至少需要幾條船?”,用進一法(用商加1)”,乘船、坐車、坐板凳等,讀懂題目再作答。

  第二章————方向與位置(認識方向)

  1、地圖上的方向口訣:上北下南,左西右東;

  辨認方向時要畫方向標。

  2、“小貓在小狗的()方,()在小狗的東面”,是以小狗家為中心點,畫出方位坐標,確定方向;

  “小豬在小馬的()方”,“小馬的()方是小豬”,是以小馬家為中心點,畫出方位坐標,確定方向。

  3、太陽早上從東邊升起,西邊落下;

  指南針一頭指著(),一頭指著()。小明早上面向太陽時,他的前面是(),后面是(),左面是(),右面是()

  4、當吹東南風時,紅旗往()飄;

  吹西北風時,紅旗往()飄。

  第三章————生活中的大數(shù)(認識10000以內的數(shù))

  1、計數(shù)器上從右邊數(shù)起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左邊是()位,右邊是()位。

  2、一個四位數(shù)最高位是()位,它的千位是5,個位是2,其他的數(shù)位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三個千,五個一組成的`數(shù)是(),由9個一,兩個百和一個千組成的數(shù)是()。

  5、讀數(shù)時,要從高讀起,中間有一個或兩個0,都只讀一個0個“零”;

  末尾不管有幾個“0”,都不讀;

  寫數(shù),末尾不管有幾個0,都不讀。寫數(shù)時,從高位寫起,按照數(shù)位順序表寫,中間或末尾哪一位上沒有數(shù),就寫“0”占位。

  6、10個十是(),10個一百是(),10個一千是(),100個一百是()。10000里面有()個百,1000里面有()個十。

  7、最大的三位數(shù)是(),最小的三位數(shù)是()。最大的四位數(shù)是(),最小的四位數(shù)是()。

  8、比較大小時,先比較位數(shù),位數(shù)多的數(shù)就大,位數(shù)少的數(shù)就;

  位數(shù)相同時,從最高位開始比較,最高位上的數(shù)字相同的,就比下一位,直到比出大小。從大到小用“>”,從小到大用“<”。

  第四章————測量

  1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相鄰單位之間的進率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、長度單位比較大小,首先要觀察單位,換成統(tǒng)一的單位之后才能比較;

  4、長度單位的加減法,米加米,分米加分米.......就是把相同的單位進行加減。

  第五章————加與減

  1、口算整百加減整百時,想成幾個百加減幾個百,加減整十數(shù)的算理也相同。

  2、計算時要注意:

  (1)、相同數(shù)位要對齊,從個位算起。

 。2)、計算加法時,哪一位相加滿十,要向前一位“進一”。

  (3)、計算減法時,哪一位不夠減時,要向前一位“借1”,但是不要忘記退位時要減1;

  3、在估算中,如果估算到百位,就看十位數(shù)是多少,如果十位上的數(shù)大于5,則百位進1,十位和個位舍去,變?yōu)?,如估算678,就變?yōu)?00;

  如果十位上的數(shù)小于5,則百位不變,十位和個位舍去,變?yōu)?,如估算607,就變?yōu)?00;

  4、加數(shù)+加數(shù)=和一個加數(shù)=和-另一個加數(shù)如:()+156=368(用368-156計算)280+()=760(用760-280計算)

  5、被減數(shù)-減數(shù)=差被減數(shù)=減數(shù)+差減數(shù)=被減數(shù)-差如:()-156=368(用156+368計算)

  980-()=760(用980-760計算)

  6、加法的驗算方法:

 。1)交換加數(shù)的位置,看和是否相同;

 。2)用和減去其中一個加數(shù),看是否等于另一個加數(shù);

  7、減法的驗算方法:

 。1)用被減數(shù)減去差,看結果是否等于減數(shù);

 。2)用減數(shù)加上差,看結果是否等于被減數(shù)。注意:運算時不要抄錯數(shù),也不要直接把驗算結果抄上。

  第六章————認識角

  1、每個角都是由1個頂點和2條邊組成;

  2、按角的大小,將角分為銳角、直角、鈍角,所有的直角都相等,比直角小的是銳角,比直角大的是鈍角。要知道一個角是什么角,可以用三角板上的直角比一比。

  3、比較角的大小時要注意:角的大小與邊的長短無關,與角的張口大小有關,張口越大角就越大;

  4、正方形有四個直角,四條邊都相等;

  長方形有四條邊,四個直角,長方形的對邊相等;

  5、平行四邊形有四條邊,有2個銳角,2個鈍角,對邊相等,對角相等。

  第七章————時、分、秒

  1、鐘面上有12個大格,每個大格里有5個小格,一共有60個小格;

  2、秒針走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分鐘;

  3、分針走一小格是1分,走一大格是5分,走一圈是60分,也就是1小時;

  4、時針走一大格是1小時,走一圈是12小時;

  5、時、分、秒相鄰單位的進率是60;

  1時=60分1分=60秒

  6、比較時間,首先要觀察,統(tǒng)一單位之后再比較大小。

  7、時間的加減:分減分,時減時,當分不夠減時,要向前一位借1,化成60,再相加減;

  第八章————統(tǒng)計

  記錄并學會計算,誰多,誰少。

  小學數(shù)學知識點總結11

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)

  ①進率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

 、谶M率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

 、圻M率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;

  把千克換算成噸,是在數(shù)字的末尾去掉3個0。

  7、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克

  萬以內的加法和減法

  1、認識整千數(shù)(記憶:10個一千是一萬)

  2、讀數(shù)和寫數(shù)(讀數(shù)時寫漢字寫數(shù)時寫阿拉伯數(shù)字)

 、僖粋數(shù)的末尾不管有一個0或幾個0,這個0都不讀。

 、谝粋數(shù)的中間有一個0或連續(xù)的兩個0,都只讀一個0。

  3、數(shù)的大小比較:

 、傥粩(shù)不同的`數(shù)比較大小,位數(shù)多的數(shù)大。

  ②位數(shù)相同的數(shù)比較大小,先比較這兩個數(shù)的位上的數(shù),如果位上的數(shù)相同,就比較下一位,以此類推。

  4、求一個數(shù)的近似數(shù):

  記憶:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。

  的三位數(shù)是位999,最小的三位數(shù)是100,的四位數(shù)是9999,最小的四位數(shù)是1000。

  的三位數(shù)比最小的四位數(shù)小1。

  5、被減數(shù)是三位數(shù)的連續(xù)退位減法的運算步驟:

 、倭胸Q式時相同數(shù)位一定要對齊;

 、跍p法時,哪一位上的數(shù)不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數(shù)相加的和:可能是三位數(shù),也有可能是四位數(shù)。)

  7、公式被減數(shù)=減數(shù)+差

  和=加數(shù)+另一個加數(shù)

  減數(shù)=被減數(shù)—差

  加數(shù)=和—另一個加數(shù)

  差=被減數(shù)—減數(shù)

  符號/是什么意思數(shù)學

  /在數(shù)學中是“除”的意思。例如:4/5我們可以說4除以5或者四分之五。數(shù)學符號的發(fā)明及使用比數(shù)字要晚,但其數(shù)量卻超過了數(shù)字。現(xiàn)代數(shù)學常用的數(shù)學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

  實數(shù)知識點

  平方根:

  ①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術平方根。

 、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。

 、垡粋正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

 、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。

  立方根:

 、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。

 、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。

  實數(shù):

 、賹崝(shù)分有理數(shù)和無理數(shù)。

 、谠趯崝(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。

  小學數(shù)學知識點總結12

  第一單元長度單位

  1、常用的長度單位:米、厘米。

  2、測量較短物體通常用厘米作單位,測量較長物體通常用米作單位。

  3、測量物體長度的方法:將物體的左端對準直尺的“0”刻度,看物體的右端對著直尺上的刻度是幾,這個物體的長度就是幾厘米。

  4、米和厘米的關系:1米=100厘米100厘米=1米

  5、線段

 、啪段的特點:①線段是直的;②線段有兩個端點;③線段有長有短,是可以量出長度的。

  ⑵畫線段的方法:先用筆對準尺子的’0”刻度,在它的上面點一個點,再對準要畫到的長度的.厘米刻度,在它的上面也點一個點,然后把這兩個點連起來,寫出線段的長度。

 、菧y量物體的長度時,當不是從“0”刻度量起時,要用終點的刻度數(shù)減去起點的刻度數(shù)。

  6、填上合適的長度單位。

  小明身高1(米)30(厘米)

  練習本寬13(厘米)

  鉛筆長17(厘米)

  黑板長2(米)圖釘長1(厘米)

  一張床長2(米)一口井深3(米)

  學校進行100(米)賽跑

  教學樓高25(米)寶寶身高80(厘米)

  跳繩長2(米)一棵樹高3(米)

  一把鑰匙長5(厘米)

  一個文具盒長24(厘米)

  講臺高90(厘米)

  門高2(米)教室長12(米)

  筷子長20(厘米)

  一棵小樹苗高1(米)

  小朋友的頭圍48厘米

  爸爸的身高1米75厘米或175厘米

  小朋友的身高120厘米或1米20厘米

  第二單元100以內的加法和減法

  一、兩位數(shù)加兩位數(shù)

  1、兩位數(shù)加兩位數(shù)不進位加法的計算法則:把相同數(shù)位對齊列豎式,在把相同數(shù)位上的數(shù)相加。

  2、兩位數(shù)加兩位數(shù)進位加法的計算法則:

 、傧嗤瑪(shù)位對齊;

 、趶膫位加起;

  ③個位滿十向十位進1。

  3、筆算兩位數(shù)加兩位數(shù)時,相同數(shù)位要對齊,從個位加起,個位滿十要向十位進“1”,十位上的數(shù)相加時,不要遺漏進上來的“1”。

  4、和=加數(shù)+加數(shù)

  一個加數(shù)=和-另一個加數(shù)

  二、兩位數(shù)減兩位數(shù)

  1、兩位數(shù)減兩位數(shù)不退位減的筆算:相同數(shù)位對齊列豎式,再把相同數(shù)位上的數(shù)相減

  2、兩位數(shù)減兩位數(shù)退位減的筆算法則:

 、傧嗤瑪(shù)位對齊;

  ②從個位減起;

 、蹅位不夠減,從十位退1,在個位上加10再減。

  3、筆算兩位數(shù)減兩位數(shù)時,相同數(shù)位要對齊,從個位減起,個位不夠減,從十位退1,個位加10再減,十位計算時要先減去退走的1再算。

  4、差=被減數(shù)-減數(shù)

  被減數(shù)=減數(shù)+差

  減數(shù)=被減數(shù)+差

  三、連加、連減和加減混合

  1、連加、連減

  連加、連減的筆算順序和連加、連減的口算順序一樣,都是從左往右依次計算。

 、龠B加計算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相加一樣,都要把相同數(shù)位對齊,從個位加起。

 、谶B減運算可以分步計算,也可以寫成一個豎式計算,計算方法與兩個數(shù)相減一樣,都要把相同數(shù)位對齊,從個位減起。

  2、加減混合

  加、減混合算式,其運算順序、豎式寫法都與連加、連減相同。

  3、加減混合運算寫豎式時可以分步計算,方法與兩個數(shù)相加(減)一樣,要把相同數(shù)位對齊,從個位算起;也可以用簡便的寫法,列成一個豎式,先完成第一步計算,再用第一步的結果加(減)第二個數(shù)。

  四、解決問題(應用題)

  1、步驟:

 、傧茸x題;

 、诹袡M式,寫結果,千萬別忘記寫單位(單位為:多少或者幾后面的那個字或詞)

 、圩鞔。

  2、求“一個已知數(shù)”比“另一個已知數(shù)”多多少、少多少?用減法計算。用“比”字兩邊的較大數(shù)減去較小數(shù)。

  3、比一個數(shù)多幾、少幾,求這個數(shù)的問題。先通過關鍵句分析,“比”字前面是大數(shù)還是小數(shù),“比”字后面是大數(shù)還是小數(shù),問題里面要求大數(shù)還是小數(shù),求大數(shù)用加法,求小數(shù)用減法。

  4、關于提問題的題目,可以這樣提問:

 、佟.和……一共…….?

  ②……比……..多多少/幾……?

 、邸取..少多少/幾……?

  第三單元元角的初步認識

  1、角的初步認識

  (1)角是由一個頂點和兩條邊組成的;

  (2)畫角的方法:從一個點起,用尺子向不同的方向畫兩條直線。

  (3)角的大小與邊的長短沒有關系,與角的兩條邊張開的大小有關,角的兩條邊張開得越大,角就越大,角的兩條邊張開得越小,角就越小。

  2、直角的初步認識

  (1)直角的判斷方法:用三角尺上的直角比一比(頂點對頂點,一邊對一邊,再看另一條邊是否重合)。

  (2)畫直角的方法:

  ①先畫一個頂點,再從這個點出發(fā)畫一條直線;

 、谟萌浅呱系闹苯琼旤c對齊這個點,一條直角邊對齊這條線;

 、墼購倪@點出發(fā)沿著三角尺上的另一條直角邊畫一條線;

 、茏詈髽顺鲋苯菢酥。

  (3)比直角小的是銳角,比直角大的是鈍角:銳角<直角<鈍角。

  (4)所有的直角都一樣大

  (5)每個三角尺上都有1個直角,兩個銳角。紅領巾上有3個角,其中一個是鈍角,兩個是銳角。一個長方形中和正方形中都是有4個直角。

  小學數(shù)學知識點總結13

  1.奇偶性

  問題

  奇+奇=偶奇×奇=奇

  奇+偶=奇奇×偶=偶

  偶+偶=偶偶×偶=偶

  2.位值原則

  形如:abc=100a+10b+c

  3.數(shù)的整除特征:

  整除數(shù)特征

  2末尾是0、2、4、6、8

  3各數(shù)位上數(shù)字的和是3的倍數(shù)

  5末尾是0或5

  9各數(shù)位上數(shù)字的和是9的倍數(shù)

  11奇數(shù)位上數(shù)字的和與偶數(shù)位上數(shù)字的和,兩者之差是11的倍數(shù)

  4和25末兩位數(shù)是4(或25)的倍數(shù)

  8和125末三位數(shù)是8(或125)的倍數(shù)

  7、11、13末三位數(shù)與前幾位數(shù)的差是7(或11或13)的倍數(shù)

  4.整除性質

 、偃绻鹀|a、c|b,那么c|(ab)。

 、谌绻鸼c|a,那么b|a,c|a。

 、廴绻鸼|a,c|a,且(b,c)=1,那么bc|a。

  ④如果c|b,b|a,那么c|a.

  ⑤a個連續(xù)自然數(shù)中必恰有一個數(shù)能被a整除。

  5.帶余除法

  一般地,如果a是整數(shù),b是整數(shù)(b≠0),那么一定有另外兩個整數(shù)q和r,0≤r

  當r=0時,我們稱a能被b整除。

  當r≠0時,我們稱a不能被b整除,r為a除以b的余數(shù),q為a除以b的不完全商(亦簡稱為商)。用帶余數(shù)除式又可以表示為a÷b=q……r,0≤r

  小學生奧數(shù)知識點

  數(shù)列求和:

  等差數(shù)列:在一列數(shù)中,任意相鄰兩個數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。

  基本概念:首項:等差數(shù)列的第一個數(shù),一般用a1表示;

  項數(shù):等差數(shù)列的所有數(shù)的個數(shù),一般用n表示;

  公差:數(shù)列中任意相鄰兩個數(shù)的差,一般用d表示;

  通項:表示數(shù)列中每一個數(shù)的公式,一般用an表示;

  數(shù)列的和:這一數(shù)列全部數(shù)字的`和,一般用Sn表示。

  基本思路:等差數(shù)列中涉及五個量:a1,an,d,n,sn,通項公式中涉及四個量,如果己知其中三個,就可求出第四個;求和公式中涉及四個量,如果己知其中三個,就可以求這第四個。

  基本公式:通項公式:an=a1+(n-1)d;

  通項=首項+(項數(shù)一1)×公差;

  數(shù)列和公式:sn,=(a1+an)×n÷2;

  數(shù)列和=(首項+末項)×項數(shù)÷2;

  項數(shù)公式:n=(an+a1)÷d+1;

  項數(shù)=(末項-首項)÷公差+1;

  公差公式:d=(an-a1))÷(n-1);

  公差=(末項-首項)÷(項數(shù)-1);

  關鍵問題:確定已知量和未知量,確定使用的公式

  小學奧數(shù)幾何知識點整理

  鳥頭定理即共角定理。

  燕尾定理即共邊定理的一種。

  共角定理:

  若兩三角形有一組對應角相等或互補,則它們的面積比等于對應角兩邊乘積的比。

  共邊定理:

  有一條公共邊的三角形叫做共邊三角形。

  共邊定理:設直線AB與PQ交與M則S△PAB/S△QAB=PM/QM

  這幾個定理大都利用了相似圖形的方法,但小學階段沒有學過相似圖形,而小學奧數(shù)中,常常要引入這些,實在有點難為孩子。

  為了避開相似,我們用相應的底,高的比來推出三角形面積的比。

  例如燕尾定理,一個三角形ABC中,D是BC上三等分點,靠近B點。連接AD,E是AD上一點,連接EB和EC,就能得到四個三角形。

  很顯然,三角形ABD和ACD面積之比是1:2

  因為共邊,所以兩個對應高之比是1:2

  而四個小三角形也會存在類似關系

  三角形ABE和三角形ACE的面積比是1:2

  三角形BED和三角形CED的面積比也是1:2

  所以三角形ABE和三角形ACE的面積比等于三角形BED和三角形CED的面積比,這就是傳說中的燕尾定理。

  以上是根據(jù)共邊后,高之比等于三角形面積之比證明所得。

  必須要強記,只要理解,到時候如何變形,你都能會做。至于鳥頭定理,也不要死記硬背,掌握原理,用起來就會得心應手。

  小學數(shù)學知識點總結14

  1、乘法的含義

  乘法是求幾個相同加數(shù)連加的和的簡便算法。如:計算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.

  2、乘法算式的寫法和讀法

 、胚B加算式改寫為乘法算式的方法。求幾個相同加數(shù)的和,可以用乘法計算。寫乘法算式時,可以用乘法計算。寫乘法算式時,可以先寫相同的加數(shù),然后寫乘號,再寫相同加數(shù)的個數(shù),最后寫等號與連加的和;也可以先寫相同加數(shù)的個數(shù),然后寫乘號,再寫相同加數(shù),最后寫等號與連加的和。

  如:4+4+4=12改寫成乘法算式是4×3=12或3×4=12

  4 × 3 = 12或3 × 4 = 12

 、瞥朔ㄋ闶降淖x法。讀乘法算式時,要按照算式順序來讀。如:6×3=18讀作:“6乘3等于18”。

  3、乘法算式中各部分的名稱及實際表示的意義

  在乘法算式里,乘號前面的數(shù)和乘號后面的數(shù)都叫做“乘數(shù)”;等號后面的得數(shù)叫做“積”。

  4、乘法算式所表示的意義

  求幾個相同加數(shù)的和,用乘法計算比較簡單。一道乘法算式表示的.就是幾個相同加數(shù)連加的和。如:4×5表示5個4相加或4個5相加。

  5、加法寫成乘法時,加法的和與乘法的積相同。

  6、乘法算式中,兩個乘數(shù)交換位置,積不變。

  7、算式各部分名稱及計算公式。

  乘法:乘數(shù)×乘數(shù)=積

  加法:加數(shù)+加數(shù)=和

  和—加數(shù)=加數(shù)

  減法:被減數(shù)—減數(shù)=差

  被減數(shù)=差+減數(shù)

  減數(shù)=被減數(shù)—差

  8、在9的乘法口訣里,幾乘9或9乘幾,都可看作幾十減幾,其中“幾”是指相同的數(shù)。

  如:1×9=10—1 9×5=50—5

  9、看圖,寫乘加、乘減算式時:

  乘加:先把相同的部分用乘法表示,再加上不相同的部分。

  乘減:先把每一份都算成相同的,寫成乘法,然后再把多算進去的減去。

  計算時,先算乘,再算加減。

  如:加法:3+3+3+3+2=14乘加:3×4+2=14乘減:3×5-1=14

  10、“幾和幾相加”與“幾個幾相加”有區(qū)別

  求幾和幾相加,用幾加幾;如:求4和3相加是多少?用加法(4+3=7)

  求幾個幾相加,用幾乘幾。

  如:求4個3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)

  補充:幾和幾相乘,求積?用幾×幾.如:2和4相乘用2×4=8

  2個乘數(shù)都是幾,求積?用幾×幾。如:2個8相乘用8×8=64

  11、一個乘法算式可以表示兩個意義,如“4×2”既可以表示“4個2相加”,也可以表示“2個4相加”。

  “5+5+5”寫成乘法算式是(3×5=15)或(5×3=15),

  都可以用口訣(三五十五)來計算,表示(3)個(5)相加

  3×5=15讀作:3乘5等于15. 5×3=15讀作:5乘3等于15

  第五單元觀察物體

  1、從不同的角度觀察同一物體,所看到的物體的形狀一般是不同的;

  2、觀察物體時,要抓住物體的特征來判斷。

  3、觀察長方體的某一面,看到的可能是長方形或正方形。觀察正方形的某一面,看到的都是正方形

  4、觀察圓柱體,看到的可能是長方形或圓形。觀察球體,看到的都是圓形

  第七單元認識時間

  1、認識時間

  (1)鐘面上有時針和分針,走得快的,較長的是分針;走得慢的,較短的是時針;

  (2)鐘面上有12個大格,60個小格,1個大格有5個小格。時針走1大格是1小時,分針走1大格是5分鐘。

  (3)時針走1大格分針要走一圈,所以1時=60分;

  (4)半小時=30分,一刻鐘=15分鐘

  (5)時間的讀與寫:如3:30,可以讀作3時30分,也可以讀作3點半;8時零5分應寫作8:05。

  2、運用知識解決問題

  (1)要按著時間的先后順序安排事件,時間上不能重復。

  (2)問過幾分鐘后是幾時,先要讀出現(xiàn)在是幾時,再推算過幾分鐘后是幾時幾分。

  (3)時針和分針能形成直角的時刻是3時和9時。

  第八單元數(shù)學廣角-搭配

  1、用兩個不同的數(shù)字(0除外)組合時可以交換兩個數(shù)字的位置;用三個不同的數(shù)字組合成兩位數(shù)時,可以讓每個數(shù)字(0除外)作十位數(shù)字,其余的兩個數(shù)字依次和它組合。

  2、借用連線或者符號解答問題比較簡單。

  3、排列與順序有關,組合與順序無關。

  小學數(shù)學知識點總結15

  時分秒

  1、鐘面上有3根針,它們是(時針)、(分針)、(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。

  2、鐘面上有(12)個數(shù)字,(12)個大格,(60)個小格;每兩個數(shù)間是(1)個大格,也就是(5)個小格。

  3、時針走1大格是(1)小時;分針走1大格是(5)分鐘,走1小格是( 1)分鐘;秒針走1大格是(5)秒鐘,走1小格是(1)秒鐘。

  4、時針走1大格,分針正好走(1)圈,分針走1圈是(60)分,也就是(1)小時。時針走1圈,分針要走(12)圈。

  5、分針走1小格,秒針正好走(1)圈,秒針走1圈是(60)秒,也就是(1)分鐘。

  6、時針從一個數(shù)走到下一個數(shù)是(1小時)。分針從一個數(shù)走到下一個數(shù)是(5分鐘)。秒針從一個數(shù)走到下一個數(shù)是(5秒鐘)。

  7、鐘面上時針和分針正好成直角的時間有:(3點整)、(9點整)。

  8、公式。(每兩個相鄰的時間單位之間的進率是60)

  1時=60分1分=60秒

  半時=30分60分=1時

  60秒=1分30分=半時

  萬以內的加法和減法

  1、認識整千數(shù)(記憶:10個一千是一萬)

  2、讀數(shù)和寫數(shù)(讀數(shù)時寫漢字寫數(shù)時寫阿拉伯數(shù)字)

 、僖粋數(shù)的末尾不管有一個0或幾個0,這個0都不讀。

  ②一個數(shù)的中間有一個0或連續(xù)的兩個0,都只讀一個0。

  3、數(shù)的大小比較:

  ①位數(shù)不同的數(shù)比較大小,位數(shù)多的數(shù)大。

 、谖粩(shù)相同的數(shù)比較大小,先比較這兩個數(shù)的最高位上的數(shù),如果最高位上的數(shù)相同,就比較下一位,以此類推。

  4、求一個數(shù)的近似數(shù):

  記憶:看最位的后面一位,如果是0-4則用四舍法,如果是5-9就用五入法。

  最大的三位數(shù)是位999,最小的三位數(shù)是100,最大的四位數(shù)是9999,最小的四位數(shù)是1000。最大的三位數(shù)比最小的四位數(shù)小1。

  5、被減數(shù)是三位數(shù)的連續(xù)退位減法的運算步驟:

 、倭胸Q式時相同數(shù)位一定要對齊;

  ②減法時,哪一位上的數(shù)不夠減,從前一位退1;如果前一位是0,則再從前一位退1。

  6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數(shù)相加的和:可能是三位數(shù),也有可能是四位數(shù)。)

  7、公式

  和=加數(shù)+另一個加數(shù)

  加數(shù)=和-另一個加數(shù)

  減數(shù)=被減數(shù)-差

  被減數(shù)=減數(shù)+差

  差=被減數(shù)-減數(shù)

  測量

  1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。

  2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。

  3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。

  4、在計算長度時,只有相同的長度單位才能相加減。

  小技巧:換算長度單位時,把大單位換成小單位就在數(shù)字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數(shù)字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。

  5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10 )

 、龠M率是10:

  1米=10分米, 1分米=10厘米,

  1厘米=10毫米, 10分米=1米,

  10厘米=1分米, 10毫米=1厘米,

 、谶M率是100:

  1米=100厘米, 1分米=100毫米,

  100厘米=1米, 100毫米=1分米

 、圻M率是1000:

  1千米=1000米, 1公里==1000米,

  1000米=1千米, 1000米=1公里

  6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。

  小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數(shù)字的末尾加上3個0;

  把千克換算成噸,是在數(shù)字的末尾去掉3個0。

  7、相鄰兩個質量單位進率是1000。

  1噸=1000千克1千克=1000克

  1000千克= 1噸1000克=1千克

  倍的認識

  1、求一個數(shù)是另一個數(shù)的幾倍用除法:一個數(shù)÷另一個數(shù)=倍數(shù)

  2、求一個數(shù)的幾倍是多少用乘法:這個數(shù)×倍數(shù)=這個數(shù)的幾倍

  多位數(shù)乘一位數(shù)

  1、估算。(先求出多位數(shù)的近似數(shù),再進行計算。如497×7≈3500)

  2、① 0和任何數(shù)相乘都得0;② 1和任何不是0的數(shù)相乘還得原來的數(shù)。

  3、因數(shù)末尾有幾個0,就在積的末尾添上幾個0。

  4、三位數(shù)乘一位數(shù):積有可能是三位數(shù),也有可能是四位數(shù)。

  公式:速度×時間=路程

  每節(jié)車廂的人數(shù)×車廂的數(shù)量=全車的人數(shù)

  5、(關于“大約)應用題:

 、贄l件中出現(xiàn)“大約”,而問題中沒有“大約”,求準確數(shù)。→(=)

 、跅l件中沒有,而問題中出現(xiàn)“大約”。求近似數(shù),用估算!(≈)

 、蹢l件和問題中都有“大約”,求近似數(shù),用估算!(≈)

  四邊形

  1、有4條直的邊和4個角封閉圖形我們叫它四邊形。

  2、四邊形的'特點:有四條直的邊,有四個角。

  3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。

  4、正方形的特點:有4個直角,4條邊相等。

  5、長方形和正方形是特殊的平行四邊形。

  6、平行四邊形的特點:

 、賹呄嗟取窍嗟。

 、谄叫兴倪呅稳菀鬃冃。(三角形不容易變形)

  7、封閉圖形一周的長度,就是它的周長。

  8、公式。

  正方形的周長=邊長×4

  正方形的邊長=周長÷4,

  長方形的周長=(長+寬)×2

  長方形的長=周長÷2-寬,

  長方形的寬=周長÷2-長

  分數(shù)的初步認識

  1、把一個物體或一個圖形平均分成幾份,取其中的幾份,就是這個物體或圖形的幾分之幾。

  2、把一個整體平均分得的份數(shù)越多,它的每一份所表示的數(shù)就越小。

  3、①分子相同,分母小的分數(shù)反而大,分母大的分數(shù)反而小。

  ②分母相同,分子大的分數(shù)就大,分子小的分數(shù)就小。

  4、①相同分母的分數(shù)相加、減:分母不變,只和分子相加、減。

 、 1與分數(shù)相減:1可以看作是與減數(shù)分母相同的,同分子分母的分數(shù)。

【小學數(shù)學知識點總結】相關文章:

小學數(shù)學必背知識點總結01-16

小學數(shù)學的知識點總結(通用15篇)05-18

大學數(shù)學實驗知識點總結12-02

初中數(shù)學知識點總結02-02

蘇教版數(shù)學中考知識點總結02-04

小學冀教版數(shù)學知識點總結大全03-06

人教版初中數(shù)學知識點總結03-26

高三數(shù)學復習知識點總結12-26

大學數(shù)學微積分知識點總結03-04