- 相關推薦
初中軸對稱知識點總結(jié)
總結(jié)是事后對某一階段的學習或工作情況作加以回顧檢查并分析評價的書面材料,它可以使我們更有效率,讓我們好好寫一份總結(jié)吧。你所見過的總結(jié)應該是什么樣的?以下是小編精心整理的初中軸對稱知識點總結(jié),僅供參考,大家一起來看看吧。
1.軸對稱:
把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
2.軸對稱圖形:
如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質(zhì):
(1)關于某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關于某條直線對稱,那么對稱軸是對應點連線的垂直平分線;
(3)兩個圖形關于某條直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上;
(4)如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質(zhì):①線段垂直平分線上的點到這條線段兩個端點的距離相等;
、诘揭粭l線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:根據(jù)線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交于一點,并且這一點到三個頂點的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質(zhì):
①在角的平分線上的點到這個角的兩邊的距離相等.
、诘揭粋角的兩邊距離相等的點,在這個角的平分線上.
注意:根據(jù)角平分線的性質(zhì),三角形的三個內(nèi)角的平分線交于一點,并且這一點到三條邊的距離相等.
6.等腰三角形的性質(zhì)與判定:
性質(zhì):
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質(zhì)除“三線合一”外,三角形中的主要線段之間也存在著特殊的性質(zhì),如:①等腰三角形兩底角的平分線相等;②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質(zhì)與判定:
性質(zhì):
(1)等邊三角形的三個角都相等,并且每個角都等于60°;
(2)等邊三角形具有等腰三角形的所有性質(zhì),并且在每條邊上都有“三線合一”。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60°的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
【初中軸對稱知識點總結(jié)】相關文章:
初中物理知識點總結(jié)10-11
初中幾何知識點總結(jié)05-27
初中物理知識點總結(jié)06-01
初中物理的知識點總結(jié)08-14
初中幾何知識點總結(jié)10-07
初中物理知識點總結(jié)(大全)05-26
歷史初中知識點總結(jié)08-29
初中幾何知識點總結(jié)歸納07-22
初中數(shù)學知識點總結(jié)08-15
初中語文知識點總結(jié)10-16