欧美另类日韩中文色综合,天堂va亚洲va欧美va国产,www.av在线播放,大香视频伊人精品75,奇米777888,欧美日本道免费二区三区,中文字幕亚洲综久久2021

《數(shù)學(xué)史》讀后感

時(shí)間:2024-10-17 09:35:54 思穎 讀后感范文 我要投稿

《數(shù)學(xué)史》讀后感(精選26篇)

  當(dāng)認(rèn)真看完一本名著后,相信大家一定領(lǐng)會(huì)了不少東西,此時(shí)需要認(rèn)真思考讀后感如何寫(xiě)了哦。現(xiàn)在你是否對(duì)讀后感一籌莫展呢?以下是小編精心整理的《數(shù)學(xué)史》讀后感,歡迎閱讀,希望大家能夠喜歡。

《數(shù)學(xué)史》讀后感(精選26篇)

  《數(shù)學(xué)史》讀后感 1

  最近一段時(shí)間,我花兩天時(shí)間認(rèn)真閱讀了《這才是好讀的數(shù)學(xué)史》這本書(shū)。這使得我對(duì)數(shù)學(xué)的發(fā)展有了更多的了解。

  通過(guò)這本書(shū)的內(nèi)容,我了解到了數(shù)學(xué)是如何發(fā)展起來(lái)的,和一些為數(shù)學(xué)發(fā)展做出過(guò)巨大貢獻(xiàn)的集體或個(gè)人。從這本書(shū)里,我知道了,數(shù)學(xué)是從古代中東地區(qū)發(fā)展起來(lái)的,在經(jīng)過(guò)一段時(shí)間的發(fā)展后,之后便在古希臘,印度,之后再是伊斯蘭帝國(guó)成長(zhǎng)和發(fā)揚(yáng)光大,后來(lái)再在歐洲得到進(jìn)一步的發(fā)展。這本書(shū)還告訴了我,數(shù)學(xué)不是男性的天下,因?yàn)闀?shū)里還提及了一些十分杰出的女性數(shù)學(xué)家,她們也為數(shù)學(xué)的發(fā)展做出了巨大的貢獻(xiàn)。

  數(shù)學(xué)史是一個(gè)龐大的內(nèi)容,可以說(shuō),自從文明開(kāi)始,就有了人去研究和在生活之中使用數(shù)學(xué),數(shù)學(xué)為人們的生活帶去了巨大的便利。這本書(shū)在做表述數(shù)學(xué)史這一龐大的內(nèi)容時(shí),還將其盡量簡(jiǎn)化,簡(jiǎn)化成了幾個(gè)板塊并且還是用十分生動(dòng)的有趣的語(yǔ)言,但這樣也有缺點(diǎn),就是有很多其他的事情沒(méi)有介紹到,同時(shí)對(duì)于中國(guó)的數(shù)學(xué),作者可能是沒(méi)能找到太多相關(guān)的資料,所以并沒(méi)有介紹太多。

  《這才是好讀的數(shù)學(xué)史》這本書(shū)先是說(shuō)了數(shù)學(xué)在各個(gè)古代文明中的發(fā)展,之后又講了其中世界上有名的.數(shù)學(xué)科目,并分別介紹了在這些方面出名的數(shù)學(xué)家,在后面又講到了現(xiàn)代數(shù)學(xué),通過(guò)這兒我知道了,我們現(xiàn)在所學(xué)的數(shù)學(xué)是非常古老的,幾千年前的東西了,我們甚至連中世紀(jì)的水平都沒(méi)達(dá)到,也由此可以看出數(shù)學(xué)的發(fā)展之快。數(shù)學(xué)在一次次的個(gè)性與進(jìn)步當(dāng)中,變得越來(lái)越深?yuàn)W,難以理解。

  從千年前的1+1=2再到函數(shù),再到微積分,再到現(xiàn)代數(shù)學(xué),數(shù)學(xué)也開(kāi)始運(yùn)用在更多地方,像航天,工程等,所以說(shuō),只有學(xué)好數(shù)學(xué)才能為社會(huì)做出更大的貢獻(xiàn)。

  《數(shù)學(xué)史》讀后感 2

  讀完《這才是好讀的數(shù)學(xué)史》之后,我最想表達(dá)的就是對(duì)數(shù)學(xué)悠長(zhǎng)的歷史的感嘆,這本書(shū)讓我了解到從3.7萬(wàn)年前到現(xiàn)在21世紀(jì)的數(shù)學(xué)的發(fā)展與進(jìn)步,也明白了數(shù)學(xué)在生活中的重要性。

  下面我將介紹幾點(diǎn)我印象最深刻的內(nèi)容:

  在書(shū)中第一章:開(kāi)端中介紹了四大文明古國(guó)的數(shù)學(xué)文化,包括當(dāng)時(shí)的人們用什么材質(zhì)的東西來(lái)記錄數(shù)學(xué),用數(shù)學(xué)干什么以及保存情況如何。在這一章講述古巴比倫的數(shù)學(xué)是寫(xiě)了他們數(shù)學(xué)中幾個(gè)特征,包括以60的冪表示數(shù)字,所以接近4000年后的今天為什么仍然把一小時(shí)分成60分,把一分鐘分成60秒。在這一章中也講了我國(guó)古代的數(shù)學(xué)文化,在書(shū)中介紹了《算經(jīng)十書(shū)》《九章算術(shù)》等中國(guó)古代的數(shù)學(xué)經(jīng)典,由于種種原因?qū)е庐?dāng)時(shí)的數(shù)學(xué)文化的損失,但作者實(shí)事求是,沒(méi)有寫(xiě)一些沒(méi)有歷史根據(jù)的東西,再一次讓我感受到這本書(shū)的嚴(yán)謹(jǐn)。

  書(shū)中是按國(guó)家的順序進(jìn)行安排的,因?yàn)槿绻磿r(shí)間順序安排的話,很容易弄混淆,作者按照時(shí)間線上在某個(gè)時(shí)間點(diǎn)上最重要的事情的國(guó)家來(lái)安排,體現(xiàn)了本書(shū)“好讀”的.特點(diǎn)。

  在書(shū)中有一個(gè)細(xì)節(jié)讓我注意,每一章最后都會(huì)有一段來(lái)推薦一些關(guān)于本章內(nèi)容更詳細(xì)的講解的書(shū)目,甚至詳細(xì)到了具體在哪一章,在書(shū)的最后把對(duì)應(yīng)的書(shū)名寫(xiě)了出來(lái)(雖然是英語(yǔ)的,我看不懂)從中可以看到作者對(duì)待數(shù)學(xué)的嚴(yán)謹(jǐn)和細(xì)致。

  我非常喜歡在書(shū)中的一句話“學(xué)習(xí)數(shù)學(xué)就像認(rèn)識(shí)一個(gè)人一樣,你對(duì)他(她)的過(guò)去了解的越多,你現(xiàn)在和將來(lái)就能越理解他(她),并與其互動(dòng)。”這句話感覺(jué)就像說(shuō)中了我的感受,我認(rèn)為閱讀完之后,自己不僅會(huì)對(duì)數(shù)學(xué)更有興趣,而且在以后學(xué)習(xí)數(shù)學(xué)的時(shí)候更加認(rèn)真對(duì)待。

  《數(shù)學(xué)史》讀后感 3

  在這個(gè)寒假,我閱讀了一本名叫《這才是好讀的數(shù)學(xué)史》這本書(shū)叫這個(gè)名字確實(shí)是名副其實(shí),他為人們介紹了最全面的數(shù)學(xué)史,以及名人與數(shù)學(xué)之前的故事,還有各國(guó)數(shù)學(xué)的起源到發(fā)展。

  數(shù)學(xué)的形狀和名稱以及關(guān)于計(jì)數(shù)和算數(shù)運(yùn)算的基本概念似乎是人類(lèi)的遺產(chǎn)。早在公元前500年,數(shù)學(xué)就出現(xiàn)了,隨著社會(huì)的不斷發(fā)展,就需要一些方法來(lái)統(tǒng)計(jì)拖款欠稅的數(shù)額等等,這時(shí)候數(shù)學(xué)就開(kāi)始出現(xiàn)了。那時(shí)候的古埃及人用墨水在紙草上書(shū)寫(xiě)這種,這種材料是不易保存數(shù)千年的。大多數(shù)埃考古家挖掘的石頭都是在神廟和陵墓附近,而不是在古城遺址。因此我們只能通過(guò)少量的資料來(lái)考察古埃及的數(shù)學(xué)發(fā)展史。

  許多古代文化發(fā)展了各式各樣的數(shù)學(xué),但是希臘數(shù)學(xué)家們是獨(dú)一無(wú)二的,他們將邏輯推理和證明擺在數(shù)學(xué)的中心位置。希臘數(shù)學(xué)傳統(tǒng)的保持和發(fā)展一直延續(xù)到公元400年。我們了解的希臘數(shù)學(xué)最早是歐幾里得的《幾何原本》,可我們也只了解這一本著名的書(shū)。希臘數(shù)學(xué)的優(yōu)勢(shì)便是幾何,盡管希臘人也研究了整數(shù),天文學(xué),力學(xué)。但是根據(jù)古希臘幾何學(xué)史學(xué)家的說(shuō)法,最早的'希臘數(shù)學(xué)家是600年前的泰勒斯,畢達(dá)哥拉斯都要比他晚一個(gè)世紀(jì),當(dāng)記錄歷史時(shí),泰勒斯和畢達(dá)哥拉斯都成為了遠(yuǎn)古時(shí)期的神話級(jí)人物。

  又在20世紀(jì)初,希伯爾特提出了一系列重要問(wèn)題,又在21世紀(jì)開(kāi)始在克萊數(shù)學(xué)學(xué)院的帶領(lǐng)下,選擇7個(gè)數(shù)學(xué)課題,并且提供的100萬(wàn)美金來(lái)解決每一個(gè)問(wèn)題數(shù)論則是另一個(gè)發(fā)展方向。正如我們的數(shù)學(xué)概念小史中解釋的,費(fèi)馬的最后定理在1994年得到了證明。

  在今天的數(shù)學(xué)中涉及了許多不同的領(lǐng)域,所以我們要好好學(xué)習(xí)數(shù)學(xué),并且多看有關(guān)數(shù)學(xué)的書(shū),才能使我們的數(shù)學(xué)成績(jī)突飛猛進(jìn)。

  《數(shù)學(xué)史》讀后感 4

  在任何起點(diǎn)上要想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問(wèn)題,然后才能賦予答案的意義 ——引言

  數(shù)學(xué), 似乎是一個(gè)枯燥的學(xué)科,但卻是我們生活里最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟(jì)學(xué)的基礎(chǔ),是市場(chǎng)里的公平稱,是我們量化自己的必要工具...是的,數(shù)學(xué)是一個(gè)“工具箱”!那么,前人是怎么樣把這個(gè)工具弄得更為人性化,更能讓我們好好地使用呢?看完《這才是好讀的數(shù)學(xué)史》后,我知道了許多。

  《這才是好讀的數(shù)學(xué)史》介紹了數(shù)學(xué)從有記載的源頭,到最初的'算數(shù),再到代數(shù)、幾何等領(lǐng)域不斷地深入化發(fā)展的歷史過(guò)程。本書(shū)按照歷史發(fā)展順序,先后介紹了數(shù)學(xué)的開(kāi)端,古希臘的數(shù)學(xué),古印度的數(shù)學(xué),古阿拉伯的數(shù)學(xué),中世紀(jì)歐洲的數(shù)學(xué),十五和十六世紀(jì)的代數(shù)學(xué)。

  在人類(lèi)對(duì)于數(shù)學(xué)漫漫求索之路上,誕生了許多古代文化,而這些古代文化發(fā)展了各種各樣的數(shù)學(xué) 。其中,古代伊拉克的歷史跨越了數(shù)千年,它包括了許多文明,如蘇美爾,巴比倫,亞述,波斯和希臘文明。所偶有這些文明都了解并使用數(shù)學(xué),但有很多變化。在這兒不得不提到的是古希臘數(shù)學(xué)。在此之前,各個(gè)文明運(yùn)用數(shù)學(xué)僅僅是用來(lái)協(xié)助、解決一些簡(jiǎn)單的生活問(wèn)題,有時(shí)不就此滿足的人們也會(huì)有簡(jiǎn)單的探索,但希臘的數(shù)學(xué)家們是獨(dú)一無(wú)二的,他們將邏輯推理和證明作為數(shù)學(xué)中心,也是正因如此,他們永遠(yuǎn)改變了運(yùn)用數(shù)學(xué)的意義。

  數(shù)學(xué)源于生活卻高于生活。如今的數(shù)學(xué)在生活中被廣泛的運(yùn)用,一起熱愛(ài)數(shù)學(xué)吧!向?yàn)閿?shù)學(xué)做出巨大奉獻(xiàn)的前人們致敬!

  《數(shù)學(xué)史》讀后感 5

  今年的寒假出奇的漫長(zhǎng),在這漫長(zhǎng)的寒假里,我讀了一本我不怎么喜歡的書(shū)——《數(shù)學(xué)史》,為什么不喜歡呢?是因?yàn)槲液芏嗖欢亲x著讀著我就喜歡上了,《數(shù)學(xué)史》記錄著人類(lèi)數(shù)學(xué)歷史發(fā)展的進(jìn)程,讀了它,我有一點(diǎn)膚淺的體會(huì)。

  體會(huì)一:數(shù)學(xué)源自于與生活的需要與發(fā)展。

  書(shū)中寫(xiě)到:人類(lèi)在很久之前就已經(jīng)具有識(shí)辨多寡的能力,從這種原始的數(shù)學(xué)到抽象的“數(shù)”概念的形成,是一個(gè)緩慢漸進(jìn)的過(guò)程。人們?yōu)榱朔奖阌谏畋阌辛怂阈g(shù),于是開(kāi)始用手指頭去“計(jì)算”,手指頭計(jì)數(shù)不夠就開(kāi)始用石頭,結(jié)繩,刻痕去計(jì)計(jì)數(shù)。例如:古埃及的象形數(shù)字;巴比倫的楔形數(shù)字;中國(guó)的甲骨文數(shù)字;希臘的'阿提卡數(shù)字;中國(guó)籌算術(shù)碼等等。雖然每種數(shù)字的誕生都有不同的背景與用途,以及運(yùn)算法則,但都同樣在人類(lèi)歷史發(fā)展和數(shù)學(xué)發(fā)展起著至關(guān)重要的作用,極大地推動(dòng)了人類(lèi)文明的前進(jìn)。

  體會(huì)二:河谷文明和早期數(shù)學(xué)在歷史的長(zhǎng)河一樣璀璨奪目。

  歷史學(xué)家往往把興起于埃及,美索不達(dá)米亞,中國(guó)和印度等地域的古文明稱為“河谷文明”,早期的數(shù)學(xué),就是在尼羅河,底格里斯河與幼發(fā)拉底河,黃河與長(zhǎng)江,印度河與恒河等河谷地帶首先發(fā)展起來(lái)的。埃及人留下來(lái)的兩部草紙書(shū)——萊茵徳紙草書(shū)和莫斯科紙草書(shū),還有經(jīng)歷幾千年不倒的神秘金字塔,給后人詮釋了古埃及人在代數(shù)幾何的偉大成就,也給后人留下了輝煌的文化歷史,而美索不達(dá)米亞在代數(shù)計(jì)算方面更是達(dá)到令人不可思議的程度。三次方程,畢達(dá)哥拉斯都是它創(chuàng)造的不朽的歷史,在數(shù)學(xué)史上的地位是至關(guān)重要的。

  古人云:讀史使人明智。讀了《數(shù)學(xué)史》讓我明白:數(shù)學(xué)源于生活,高于生活,最終服務(wù)于生活,運(yùn)用于生活。

  《數(shù)學(xué)史》讀后感 6

  在這個(gè)寒假里,我接觸到了《數(shù)學(xué)史》這本書(shū)。這本書(shū)介紹了數(shù)學(xué)從有記載的源頭向最初的算術(shù)、幾何、統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進(jìn)程,以及如今數(shù)學(xué)的發(fā)展。

  這本書(shū)分為兩篇,上篇是數(shù)學(xué)簡(jiǎn)史,下篇是數(shù)學(xué)概念小史。這本書(shū)中令我印象最深的數(shù)學(xué)家就是費(fèi)馬。皮埃爾·德·費(fèi)馬是屬于文藝復(fù)興時(shí)期傳統(tǒng)的人,他處于重新發(fā)掘古希臘知識(shí)的中心,但是他卻問(wèn)了一個(gè)希臘人沒(méi)有想到過(guò)要問(wèn)的問(wèn)題—費(fèi)馬大定理。這個(gè)問(wèn)題困惑了世人358年,直到1994年的9月19日安德魯·懷爾斯才宣布解開(kāi)這個(gè)問(wèn)題。這個(gè)問(wèn)題起源于古希臘時(shí)代,它聯(lián)系著畢達(dá)哥拉斯所建立的數(shù)學(xué)的基礎(chǔ)和現(xiàn)代數(shù)學(xué)中各種最復(fù)雜的思想。費(fèi)馬大定理的故事和數(shù)學(xué)的歷史有著密不可分的聯(lián)系,它對(duì)于“是什么推動(dòng)著數(shù)學(xué)發(fā)展”,或者是“是什么激勵(lì)著數(shù)學(xué)家們”提供了一個(gè)獨(dú)特的`見(jiàn)解。費(fèi)馬大定理是一個(gè)充滿勇氣、欺詐、狡猾和悲慘的英雄傳奇的核心,牽涉到數(shù)學(xué)王國(guó)中所有最偉大的英雄。巴里·梅休爾評(píng)論說(shuō),在某種意義上每個(gè)人都在研究費(fèi)馬問(wèn)題,但只是零星地而沒(méi)有把它作為目標(biāo),因?yàn)檫@個(gè)證明需要把現(xiàn)代數(shù)學(xué)的整個(gè)力量聚集起來(lái)才能完全解答。安德魯所做的就是再一次把似乎是相隔很遠(yuǎn)的一些數(shù)學(xué)領(lǐng)域結(jié)合在一起。因而,他的工作似乎證明了自費(fèi)馬問(wèn)題提出以來(lái)數(shù)學(xué)所經(jīng)歷的多元化過(guò)程是合理的。

  讀了數(shù)學(xué)史后,我認(rèn)為數(shù)學(xué)在我們的生活中扮演著不可或缺的角色,只有學(xué)好數(shù)學(xué),學(xué)會(huì)應(yīng)用數(shù)學(xué),我們才能在這個(gè)正在向數(shù)字化發(fā)展的社會(huì)穩(wěn)穩(wěn)地站住腳跟。

  《數(shù)學(xué)史》讀后感 7

  從小到大,在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,我們接觸大量的數(shù)學(xué)題,但卻對(duì)數(shù)學(xué)的歷史很少提及!稊(shù)學(xué)史》,是一本專(zhuān)門(mén)研究數(shù)學(xué)的歷史,娓娓道來(lái)數(shù)學(xué)從古代到先代的發(fā)展史,滿足了我的好奇,把數(shù)學(xué)的發(fā)展過(guò)程展示出來(lái)。

  本書(shū)于1958年出版,作者是J.F.斯科特。書(shū)中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專(zhuān)門(mén)用-章講述印度和中國(guó)的數(shù)學(xué)發(fā)展。沿著時(shí)間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過(guò)程。

  數(shù)學(xué)對(duì)于我來(lái)說(shuō)是一個(gè)奇妙的科目,它不僅僅是一堆數(shù)字和符號(hào)連接在一起的`公式,更是時(shí)代和科技的發(fā)展與進(jìn)步。這本書(shū)讓我明白數(shù)學(xué)的起源與發(fā)展,隨著歷史的長(zhǎng)河不斷向過(guò)往延伸,我熱愛(ài)數(shù)學(xué),并不是因?yàn)樗鼛Ыo我較高的成績(jī),而是我本身在解出一道難題時(shí)的自豪與它帶給我的成就感,我享受解題的過(guò)程,隨著時(shí)間的流逝心卻在題海中慢慢放松,變得平靜。而在對(duì)數(shù)學(xué)史了解之后,你就像身在一張地圖,但你卻清楚的知道自己的位置,尋找方向就愈加容易。

  這本書(shū)很好的幫我更上一層樓,讓我懷著對(duì)數(shù)學(xué)的熱愛(ài)不斷探索,即便自己只不過(guò)是浩瀚星河中一粒塵埃,卻不顯得十足渺小。

  學(xué)習(xí)數(shù)學(xué),最好能夠先了解它的歷史與背景,這樣才能明白自己在學(xué)著什么,對(duì)它產(chǎn)生興趣而不是當(dāng)成必須完成的任務(wù),所以我也極力推薦大家看這本書(shū)。

  《數(shù)學(xué)史》讀后感 8

  《數(shù)學(xué)史》這本書(shū)從希臘數(shù)學(xué)講到了現(xiàn)代數(shù)學(xué)。我所感興趣的部分有幾個(gè),一是關(guān)于以前的技術(shù)系統(tǒng)。我不知搭配人們是從何時(shí)開(kāi)始計(jì)數(shù)的,但是當(dāng)時(shí)的以十的冪為基數(shù)的計(jì)數(shù)系統(tǒng)以及六十進(jìn)制的分?jǐn)?shù)表示雖然不及現(xiàn)在的阿拉伯?dāng)?shù)字方便,但仍值得我們稱贊。第二是希臘數(shù)學(xué)。雖然希臘人并不太在意應(yīng)用數(shù)學(xué),但是我覺(jué)得他們所研究的幾何也是需要來(lái)源于生活的,是要從生活中去尋找,發(fā)現(xiàn)和提取的。也就是那個(gè)時(shí)候,歐幾里得編出了影響深遠(yuǎn)的《幾何原本》。我們現(xiàn)在所學(xué)的幾何就與《幾何原本》有著很大的關(guān)系,所以說(shuō)這么看來(lái)的話,到現(xiàn)在我們也不過(guò)只是學(xué)到了數(shù)學(xué)的皮毛而已,許多的知識(shí)還是希臘數(shù)學(xué)。且其中的平行公設(shè)到了十九世紀(jì)仍然被研究。所以用影響深遠(yuǎn)來(lái)描述《幾何原本》,應(yīng)該不為過(guò)吧。同時(shí),他們也對(duì)Π有了一些認(rèn)識(shí)。由此可見(jiàn),他們不僅從生活中提煉出了數(shù)學(xué)思想,而且還在上面添加了許多華麗的色彩,使得整個(gè)數(shù)學(xué)系統(tǒng)更加龐大,也讓數(shù)學(xué)漸漸成為我們不敢仰望的.存在。最后一個(gè)令我感興趣的部分是代數(shù)。步入初中學(xué)習(xí)后,我們開(kāi)始接觸代數(shù),但讀了《數(shù)學(xué)史》我才知道代數(shù)竟然是十六、十七世紀(jì)所產(chǎn)生的,過(guò)了幾個(gè)世紀(jì),代數(shù)又成為了讓人頭疼的部分。并且在那個(gè)時(shí)候,他們就已經(jīng)開(kāi)始研究一些復(fù)雜的代數(shù)問(wèn)題了。

  《數(shù)學(xué)史》向我們完整地展示了數(shù)學(xué)各個(gè)枝節(jié)細(xì)致的發(fā)展過(guò)程,這種過(guò)程被描寫(xiě)的也還算有趣(至少讓我看得下去),雖然專(zhuān)業(yè)術(shù)語(yǔ)很多,閱讀有障礙,但我不得不說(shuō),這確實(shí)是好讀的數(shù)學(xué)史。

  《數(shù)學(xué)史》讀后感 9

  數(shù)學(xué)是歷史的長(zhǎng)河中一顆閃亮的明珠,閃閃發(fā)光。生活中離不開(kāi)數(shù)學(xué),處處都能看到數(shù)學(xué)的影子。這個(gè)寒假老師叫我們讀了一本叫做《這才是好讀的數(shù)學(xué)史》的書(shū)。更加深入的了解了不同國(guó)家的不同數(shù)學(xué)發(fā)展歷史。讓我從中對(duì)數(shù)學(xué)有了不同的理解。

  我們?cè)趯W(xué)校也一直在學(xué)習(xí)數(shù)學(xué),卻從來(lái)沒(méi)有學(xué)過(guò)數(shù)學(xué)的發(fā)展歷程,通過(guò)閱讀這本書(shū)我也明白了,從古至今的數(shù)學(xué)發(fā)展是很漫長(zhǎng)的但卻十分有意義。就像現(xiàn)在我們所學(xué)的數(shù)學(xué),其實(shí)背后都有著數(shù)學(xué)家們探索的故事。從中我們也能感受到數(shù)學(xué)家不斷追求真理的那種執(zhí)著。這本書(shū)不僅講了中國(guó)的.數(shù)學(xué)發(fā)展,也還講了許多國(guó)家的數(shù)學(xué)發(fā)展。我們也看到了數(shù)學(xué)的遼闊,現(xiàn)在我們學(xué)的只是皮毛。

  數(shù)學(xué)發(fā)展的歷史長(zhǎng)河中總有一些光輝一直不掉的數(shù)學(xué)家們,他們推進(jìn)了數(shù)學(xué)的發(fā)展,真正的印刻在了歷史的長(zhǎng)河里。但是在探索數(shù)學(xué)的道路上,在他們的背后還有許多一直默默探索的人,而能夠支持他們一直走下去的理由,我想只能是熱愛(ài)吧。因?yàn)闊釔?ài),所以想探索更多。

  對(duì)于數(shù)學(xué)的探索。并不是只屬于某一個(gè)國(guó)家,而是屬于全人類(lèi)的。就像古希臘數(shù)學(xué)的中心是幾何,他們也探索出了許多關(guān)于幾何的真理。但這些真理最后也被全世界所使用,所以在探究數(shù)學(xué)這條路上全人類(lèi)都是一致的。雖然在公元五世紀(jì)標(biāo)志著古希臘數(shù)學(xué)的終結(jié),但是,古希臘的數(shù)學(xué)也給了人們?cè)S多真理。

  通過(guò)閱讀這本書(shū),我不僅了解到了數(shù)學(xué)的發(fā)展歷史,也明白了數(shù)學(xué)的發(fā)展是無(wú)止境的,具有創(chuàng)新,是開(kāi)啟科學(xué)大門(mén)的鑰匙,是人類(lèi)智慧的結(jié)晶。

  《數(shù)學(xué)史》讀后感 10

  數(shù)學(xué)是神秘的,古老而明亮,在人類(lèi)歷史長(zhǎng)河中,閃閃發(fā)光,我讀了數(shù)學(xué)史后,知道了數(shù)學(xué)的起源,發(fā)展與未來(lái)的走向,其中,《微積分與應(yīng)用數(shù)學(xué)》給我留下深刻印象

  16世紀(jì)到17世紀(jì),可以說(shuō)是一個(gè)數(shù)學(xué)史路上一個(gè)里程碑,在16世紀(jì)早期,學(xué)者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計(jì)算家”,在那個(gè)時(shí)期,代數(shù)占據(jù)了數(shù)學(xué)史的中心位置,而到了16世紀(jì)末17世紀(jì)初,人類(lèi)開(kāi)始了新的探索,代數(shù)與幾何共存,以此來(lái)研究天文,工程,航海,甚至是政治上的一些問(wèn)題:開(kāi)勒普用希臘圓錐描述太陽(yáng)系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結(jié)合,從而開(kāi)始理解彗星,光等現(xiàn)象,這一時(shí)期,可以說(shuō)是各種數(shù)學(xué)成就在此出生,但最出名的,還是微積分,當(dāng)時(shí)人們無(wú)法用數(shù)字表現(xiàn)出天體的運(yùn)動(dòng),無(wú)法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當(dāng)時(shí)最著名的`數(shù)學(xué)家——?dú)W拉也做出了一系列成就:三角形中的幾何學(xué),多面體的基本定理,有趣的是,歐拉甚至將數(shù)應(yīng)用于船舶,中彩票或是過(guò)橋,歐拉將自己生活的方方面面都往數(shù)學(xué)上想,在他的世界中,數(shù)學(xué)無(wú)處不在。

  我們不難看出這些數(shù)學(xué)家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學(xué),將數(shù)學(xué)應(yīng)用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學(xué),但最重要的是,我們熱愛(ài)數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 11

  有關(guān)數(shù)學(xué)的故事跨越了幾千年。本書(shū)分為數(shù)學(xué)簡(jiǎn)史和數(shù)學(xué)概念小史兩部分,在介紹數(shù)學(xué)的知識(shí)的同時(shí)又講述了各個(gè)時(shí)期,各個(gè)地區(qū)的數(shù)學(xué)歷史與發(fā)展,并且解決了很多的`數(shù)學(xué)題目。

  數(shù)學(xué)簡(jiǎn)史這部分介紹了許多地區(qū)的數(shù)學(xué)歷史與發(fā)展。數(shù)學(xué)的開(kāi)端、希臘數(shù)學(xué)、印度數(shù)學(xué)、阿拉伯?dāng)?shù)學(xué)等等。數(shù)學(xué)概念小史這部分則通過(guò)事例,介紹了數(shù)學(xué)界許多重要人物的成果和相關(guān)題目。數(shù)字“0”的故事就很有趣。四世紀(jì)的時(shí)候,巴比倫人用一個(gè)小點(diǎn)來(lái)避免楔形文字記數(shù)混淆,“0”作為占位開(kāi)始了它的生命。但這時(shí)候,它還只是一個(gè)跳過(guò)某些東西的符號(hào)。公元九世紀(jì)的印度開(kāi)始把0作為一個(gè)數(shù)字來(lái)對(duì)待。當(dāng)時(shí)在東方國(guó)家數(shù)學(xué)是以運(yùn)算為主,而西方是以幾何為主,所以當(dāng)阿拉伯?dāng)?shù)學(xué)家阿爾.花剌子模初引入0這個(gè)符號(hào)和概念到西方時(shí),曾經(jīng)引起西方人的困惑,把0本身作為一個(gè)數(shù)字看待的想法花了很長(zhǎng)時(shí)間才確立。

  讀完這本書(shū),我對(duì)古人先輩的智慧感到敬佩,對(duì)數(shù)學(xué)歷史的源遠(yuǎn)流長(zhǎng)感到驚嘆,更對(duì)數(shù)學(xué)知識(shí)有了更深的理解。數(shù)學(xué)源于生活卻高于生活。如今,數(shù)學(xué)在生活中被廣泛的運(yùn)用,很多事情都離不開(kāi)數(shù)學(xué)。所以,我們不說(shuō)對(duì)數(shù)學(xué)進(jìn)行什么更深層次的研究,而是應(yīng)該更加熱愛(ài)它。并且我們要學(xué)習(xí)前人那種對(duì)未知事物的堅(jiān)定、執(zhí)著的探索精神,對(duì)當(dāng)下學(xué)習(xí)的數(shù)學(xué)知識(shí)學(xué)懂、吃透。我認(rèn)為,這是很重要的。

  《數(shù)學(xué)史》讀后感 12

  數(shù)學(xué),一根串著文明歷史發(fā)展的閃耀金繩,它與文學(xué)物理學(xué)藝術(shù)經(jīng)濟(jì)學(xué)或音樂(lè)一樣,是人類(lèi)不斷發(fā)展,努力的結(jié)果。

  對(duì)數(shù)學(xué)不太敏感的我,拿起這本數(shù)學(xué)史,一開(kāi)始是不愿意翻開(kāi)的,認(rèn)為它語(yǔ)言生澀,一定有很多的生僻又陌生的專(zhuān)有名詞,幾乎滿篇皆是,所以從收到這本書(shū)之后2天內(nèi)都沒(méi)有看過(guò)。但是為了完成劉老師的作業(yè),我硬著頭皮翻開(kāi)了這本陌生的書(shū)。這本書(shū)是以時(shí)間發(fā)展為主線進(jìn)行編布的。

  讀 開(kāi)端的時(shí)候我就覺(jué)得這本書(shū)很不一樣語(yǔ)言是親切、嚴(yán)謹(jǐn)?shù)挠^點(diǎn)是新穎的。作者“從歷史開(kāi)始學(xué)數(shù)學(xué)”的觀點(diǎn)讓我對(duì)這本書(shū)產(chǎn)生了興趣。變得愿意與他一起跟隨數(shù)學(xué)的腳步,一頁(yè)一頁(yè)翻下去,讀下去。在書(shū)本中,有許多我認(rèn)識(shí)的老朋友,他們?cè)?jīng)在小學(xué)或是初中課本上出現(xiàn)過(guò)。像歐幾里得、笛卡爾。他們是數(shù)學(xué)的奠基人,為數(shù)學(xué)之路鋪上卵石。在這本書(shū)中也出現(xiàn)過(guò)一些我不熟悉的偉大數(shù)學(xué)家,他們?cè)谡J(rèn)真探究,證明的場(chǎng)景一幕幕浮現(xiàn)在腦海,令人心生敬畏。

  我記憶最深刻的`就是一位打破了“數(shù)學(xué)家都是男性”觀念的法國(guó)優(yōu)秀女?dāng)?shù)學(xué)家———索菲.熱爾曼!

  她在所謂的“啟蒙運(yùn)動(dòng)”中成長(zhǎng),懷揣著熾熱的想成為數(shù)學(xué)家的愿望,在困難重重克服了社會(huì)對(duì)女性知識(shí)分子的偏見(jiàn),在彈性理論上取得重要結(jié)果。實(shí)在令人佩服!

  當(dāng)今社會(huì),數(shù)學(xué)在多領(lǐng)域工作,在工地、廣場(chǎng)、車(chē)站、實(shí)驗(yàn)室......

  我們需要數(shù)學(xué),今天需要數(shù)學(xué),未來(lái)也一樣需要數(shù)學(xué),因?yàn)椤皵?shù)學(xué)不是被發(fā)現(xiàn)出來(lái)的,而是被發(fā)明出來(lái)的!”

  學(xué)好數(shù)學(xué)就是走好未來(lái)的一大步!

  《數(shù)學(xué)史》讀后感 13

  最近,我讀了《這才是好讀的數(shù)學(xué)史》一書(shū)的上半部分。讀完后我十分感慨,原來(lái)數(shù)學(xué)是一門(mén)如此有趣且有豐富內(nèi)涵的學(xué)科。

  這本書(shū)記載了數(shù)學(xué)從有記載的源頭再向代數(shù)、幾何(平面幾何、立體幾何、解析幾何)、統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)等領(lǐng)域不斷深化發(fā)展的歷史進(jìn)程。全書(shū)按歷史發(fā)展的順序先后介紹了古希臘、古印度、古巴比倫、古代中國(guó)、中世紀(jì)歐洲在十五世紀(jì)至十六世紀(jì)數(shù)學(xué)在順應(yīng)社會(huì)實(shí)踐需要的基礎(chǔ)上出現(xiàn)的深化、突破。

  在介紹數(shù)學(xué)發(fā)展的基礎(chǔ)上,這本書(shū)還以歷史的視角對(duì)三十種有關(guān)基礎(chǔ)數(shù)學(xué)的普通概念進(jìn)行了獨(dú)立精彩的敘述,再現(xiàn)了畢達(dá)哥拉斯、歐幾里得、歐拉等數(shù)學(xué)大師的風(fēng)采,還特地的穿插了女性數(shù)學(xué)家在數(shù)學(xué)發(fā)展中做出的巨大貢獻(xiàn),從各方面為讀者還原了真實(shí)、有趣的`數(shù)學(xué)史。

  數(shù)學(xué)與文學(xué)、物理學(xué)、藝術(shù)、經(jīng)濟(jì)學(xué)或音樂(lè)一樣,是人類(lèi)不斷發(fā)展和努力的結(jié)果。它既有過(guò)去的歷史,又有未來(lái)的發(fā)展,更有今天的廣泛應(yīng)用。我們今天學(xué)習(xí)和使用的數(shù)學(xué),在許多方面都與一千年前、五百年前甚至一百年前的數(shù)學(xué)有很大不同。在21世紀(jì),數(shù)學(xué)無(wú)疑會(huì)進(jìn)一步發(fā)展。學(xué)習(xí)數(shù)學(xué)就像認(rèn)識(shí)一個(gè)人一樣,你對(duì)他的過(guò)去了解的越多,你現(xiàn)在和將來(lái)就越能理解他并與其互動(dòng)。

  在任何起點(diǎn)上想學(xué)好數(shù)學(xué),我們需要先理解相關(guān)問(wèn)題,然后才能賦予題目有意義的答案。理解一個(gè)問(wèn)題往往取決于了解這個(gè)概念的理解,所以想理解數(shù)學(xué),就來(lái)讀《這才是好讀的數(shù)學(xué)史》。

  《數(shù)學(xué)史》讀后感 14

  數(shù)學(xué)也許對(duì)我們來(lái)說(shuō)僅僅是一門(mén)枯燥且乏味的科目,但在學(xué)習(xí)數(shù)學(xué)這門(mén)科目的時(shí)候,誰(shuí)又曾想過(guò)數(shù)學(xué)是從何而來(lái)的,數(shù)學(xué)的發(fā)展歷程又是怎么樣的……

  本來(lái)我并不知道這些,或者用詞恰當(dāng)一些,數(shù)學(xué)對(duì)于我來(lái)說(shuō)是熟悉卻陌生的:說(shuō)熟悉,從最初的小學(xué)一年級(jí)接觸數(shù)學(xué),可以說(shuō)到現(xiàn)在時(shí)間已經(jīng)蠻久了;說(shuō)陌生,從最初接觸數(shù)學(xué)以來(lái),我并不了解關(guān)于數(shù)學(xué)的發(fā)展經(jīng)過(guò)以及數(shù)學(xué)的由來(lái)。

  《數(shù)學(xué)史》這本書(shū)概括了數(shù)學(xué)的出現(xiàn)以及發(fā)展,將數(shù)學(xué)發(fā)展的幾千年的歷史寫(xiě)以書(shū)的'形式,讓人們更加容易理解。同時(shí),《數(shù)學(xué)史》也在講述發(fā)展史的同時(shí),將數(shù)學(xué)概念本身講解的十分清楚。

  從希臘人到哥德?tīng),在?shù)學(xué)的發(fā)展中一直人才輩出。數(shù)學(xué)的發(fā)展雖追蹤歐洲數(shù)學(xué)的發(fā)展,但也不失中國(guó),印度和阿拉伯文明!稊(shù)學(xué)史》將世界上的數(shù)學(xué)文明都總結(jié)在了書(shū)中,十分經(jīng)典。

  在書(shū)中,我了解到:在早期人類(lèi)社會(huì)中,數(shù)學(xué)史抽象的科學(xué),恩格斯指出:“數(shù)學(xué)在一門(mén)科學(xué)中的應(yīng)用程度,標(biāo)志著這門(mén)科學(xué)的成熟程度!钡浆F(xiàn)如今,數(shù)學(xué)對(duì)科學(xué)和社會(huì)提供著不可缺的技術(shù)與理論支持。

  數(shù)學(xué)也是一門(mén)累積性強(qiáng)的學(xué)科,重大的數(shù)學(xué)理論總是在繼承和發(fā)展原有理論的基礎(chǔ)上建立起來(lái)的,他們不僅不會(huì)推翻原有理論,反而總是包容它們,在原有的基礎(chǔ)上再做更多的鉆研。

  讀了這本書(shū),讓我對(duì)數(shù)學(xué)有了新的認(rèn)識(shí)和感悟,也讓我從更深層次了解到了數(shù)學(xué)的魅力與偉大以及對(duì)前輩的深深崇敬!稊(shù)學(xué)史》這本書(shū)是一本十分難得的記錄數(shù)學(xué)發(fā)展史的書(shū),它不僅條理清晰且易讀,實(shí)為優(yōu)秀的數(shù)學(xué)史教材。

  《數(shù)學(xué)史》讀后感 15

  從小到大,在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,接觸大量的數(shù)學(xué)題,對(duì)數(shù)學(xué)的歷史很少提及!稊(shù)學(xué)史》,一本專(zhuān)門(mén)研究數(shù)學(xué)的歷史,娓娓道來(lái),滿足了我的好奇,把數(shù)學(xué)的發(fā)展過(guò)程展示出來(lái)。

  本書(shū)于1958年出版,作者J.F.斯科特。書(shū)中主要闡述西方數(shù)學(xué)的發(fā)展歷史,但也專(zhuān)門(mén)用一章講述印度和中國(guó)的數(shù)學(xué)發(fā)展。沿著時(shí)間軸,數(shù)學(xué)的發(fā)展經(jīng)歷了從初等到高等的過(guò)程。

  上古時(shí)代的古埃及人和古巴比倫人在平時(shí)的生產(chǎn)勞作中運(yùn)用到了數(shù)學(xué)知識(shí)。

  古希臘人繼承這些數(shù)學(xué)知識(shí)并不斷拓展,成為數(shù)學(xué)史上一個(gè)“黃金時(shí)代”,涌現(xiàn)出畢達(dá)哥拉斯、柏拉圖、亞里士多德、歐幾里得、阿基米德,丟番圖等一系列耳熟能詳?shù)拿帧?/p>

  在黑暗的中世紀(jì),數(shù)學(xué)發(fā)展處于停滯狀態(tài),而斐波那契的出現(xiàn)把數(shù)學(xué)帶上復(fù)興。

  文藝復(fù)興,數(shù)學(xué)又進(jìn)入一個(gè)蓬勃發(fā)展的時(shí)期,對(duì)解三次方程和四次方程、三角學(xué)、數(shù)學(xué)符號(hào)、記數(shù)方法的研究沒(méi)有停步。“+”、“-”、“=”、“”、“>”的符號(hào)是在那個(gè)時(shí)候出現(xiàn)的,同時(shí)出了一名數(shù)學(xué)家韋達(dá)——韋達(dá)定理的發(fā)明者。

  7世紀(jì),解析幾何出現(xiàn)、力學(xué)興起、小數(shù)和對(duì)數(shù)發(fā)明。這些都為微積分的發(fā)明奠定了基礎(chǔ)。牛頓和萊布尼茲兩位大師的研究,在數(shù)學(xué)領(lǐng)域開(kāi)辟了一個(gè)新紀(jì)元。

  8世紀(jì),為完善微積分中的概念,各路數(shù)學(xué)家在數(shù)學(xué)分析方法上有所發(fā)展。歐拉、拉格朗日,柯西等大師采用極限、級(jí)數(shù)等方法讓微積分更加嚴(yán)謹(jǐn)。同時(shí),非歐幾何的理論開(kāi)始萌芽。

  縱觀全書(shū),數(shù)學(xué)的'發(fā)展是由一群人搭建起來(lái)的。前人的工作為后人的研究奠定了基礎(chǔ)。后人在前人的工作上不斷突破和創(chuàng)新。另外,數(shù)學(xué)中也有哲理,天地有大美而不言。當(dāng)看到歐拉時(shí),想到歐拉公式;看到韋達(dá),想到韋達(dá)定理。公式很簡(jiǎn)潔,但把規(guī)律說(shuō)清楚了。數(shù)學(xué)愛(ài)好者可以試著解里面的數(shù)學(xué)題,看看古人在當(dāng)時(shí)是如何研究的,有的方法很笨拙,有的方法很巧妙。讀完后,發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué),會(huì)解幾道數(shù)學(xué)題是不夠的,還要學(xué)會(huì)去培養(yǎng)自己的思維。畢竟數(shù)學(xué)家的思維也會(huì)受到歷史的局限。比如負(fù)數(shù)開(kāi)根號(hào),當(dāng)時(shí)被人看來(lái)是無(wú)法接受,后來(lái)發(fā)明了虛數(shù)。

  歷史是在不斷地前進(jìn),數(shù)學(xué)的發(fā)展亦然。想知道數(shù)學(xué)和歷史的跨界,那就來(lái)看《數(shù)學(xué)史》。

  《數(shù)學(xué)史》讀后感 16

  《數(shù)學(xué)史》把數(shù)學(xué)幾千年的發(fā)展?jié)饪s為這本編年史中。從希臘人到哥德?tīng),?shù)學(xué)一直輝煌燦爛,名人輩出,觀念的潮漲潮落到處清晰可見(jiàn)。而且,盡管追蹤的是歐洲數(shù)學(xué)的發(fā)展,但并沒(méi)有忽視中國(guó)文明、印度文明和阿拉伯文明的貢獻(xiàn),是一部經(jīng)典的關(guān)于數(shù)學(xué)及創(chuàng)造這門(mén)學(xué)科的數(shù)學(xué)家們的單卷本歷史著作。讀了這本書(shū),讓我對(duì)數(shù)學(xué)學(xué)習(xí)有了新的認(rèn)識(shí)和感悟,也讓我更深層次的了解到數(shù)學(xué)的魅力和偉大,以及對(duì)前人的崇敬。

  數(shù)學(xué)源于人類(lèi)的生活與發(fā)展。書(shū)中說(shuō),“人類(lèi)在蒙昧?xí)r代就已具有識(shí)別事物多寡的能力,從這種原始的‘?dāng)?shù)覺(jué)’到抽象的‘?dāng)?shù)’概念的形成,是一個(gè)緩慢的,漸進(jìn)的過(guò)程!比祟(lèi)為了便于生活生產(chǎn)的需要,開(kāi)始以手指頭計(jì)數(shù),手指數(shù)不夠了,開(kāi)始用石頭計(jì)數(shù),結(jié)繩計(jì)數(shù),刻痕計(jì)數(shù)。又經(jīng)過(guò)幾萬(wàn)年的發(fā)展,隨著幾種文明的誕生與發(fā)展,記數(shù)系統(tǒng)在各種文明中都有了表示方式。古埃及的`象形數(shù)字,巴比倫楔形數(shù)字,中國(guó)甲骨文數(shù)字,中國(guó)籌算數(shù)碼等等。

  但是,為什么時(shí)至今日我們最習(xí)慣和擅長(zhǎng)使用的是十進(jìn)制計(jì)數(shù)的方式呢,難道就是因?yàn)槔蠋焸円淮淮@樣教出來(lái)的嗎?很多人可能就是這樣認(rèn)為的,或者根本并未思考過(guò)。書(shū)里寫(xiě)到:“十進(jìn)制在今天的普遍使用,只不過(guò)是解剖學(xué)上一次偶然事件的結(jié)果而已:我們中的大多數(shù)人,生來(lái)就有10個(gè)手指、10個(gè)腳趾!苯(jīng)歷過(guò)扳著手指頭數(shù)數(shù)的過(guò)程,可能十進(jìn)制早已在我們的心中留下了牢固的烙印。這就是一個(gè)知識(shí)的自然形成。

  通過(guò)對(duì)書(shū)中一些知識(shí)的閱讀與思考,可以感覺(jué)到許多知識(shí)并不是那些先驅(qū)者憑空亂想出來(lái)的,是根據(jù)某種需要而研究出來(lái)的規(guī)律,而且是一些自然存在的規(guī)律,我們今天所學(xué)的知識(shí)正是這些已經(jīng)總結(jié)出來(lái)的規(guī)律!白鴺(biāo)系”這個(gè)詞,對(duì)很多人來(lái)說(shuō)可能并不陌生,即使他的數(shù)學(xué)知識(shí)已經(jīng)“還給老師”很多年了,他也許還知道什么是“經(jīng)度緯度”。為什么會(huì)出現(xiàn)這樣的現(xiàn)象呢,也許是因?yàn)楹笳咴谏钪谐霈F(xiàn)的更多一些,但其實(shí)兩者的實(shí)質(zhì)都是一樣的。一個(gè)小故事說(shuō):“笛卡爾小時(shí)候在一次晨思時(shí)看見(jiàn)天花板上有一只蒼蠅在爬,他的頭腦中閃現(xiàn)出智慧的火花,如果知道蒼蠅和相臨兩個(gè)墻壁的距離之間的關(guān)系,就能描述它在天花板上的位置與運(yùn)動(dòng)路線!边@個(gè)故事可能是編造的,但最終形成了我們今天所知的“笛卡爾坐標(biāo)系”。這樣的思想廣泛的應(yīng)用在天文,地理,物理等許多的學(xué)科中。

  我們?cè)趯W(xué)習(xí)知識(shí)的時(shí)候是否思考過(guò)這個(gè)知識(shí)是由何而來(lái)的呢?是否注意到了在知識(shí)體系這張大網(wǎng)中,每個(gè)知識(shí)在什么位置上呢?難道我們真的可以單純的認(rèn)為每個(gè)知識(shí)都是孤立的考試對(duì)象嗎?

  數(shù)學(xué)源于生活,高于生活,最終也將服務(wù)生活,運(yùn)用于生活。在一般人看來(lái),數(shù)學(xué)是一門(mén)枯燥無(wú)味的學(xué)科,因而很多人視其為畏途,從某種程度上說(shuō),這也許是由于我們的數(shù)學(xué)所教的往往是一些僵化的、一成不變的數(shù)學(xué)內(nèi)容,如果在數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)史內(nèi)容而讓數(shù)學(xué)活起來(lái),這樣也許可以激發(fā)學(xué)生的學(xué)習(xí)興趣,也有助于學(xué)生對(duì)數(shù)學(xué)認(rèn)識(shí)的深化,讓更多的學(xué)生懂得數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 17

  又這樣過(guò)了一個(gè)月了,盡管也就那么的幾節(jié)數(shù)學(xué)史的課,可是,依然讓我聽(tīng)得津津入味。認(rèn)識(shí)數(shù)學(xué)歷史,重溫?cái)?shù)學(xué)的發(fā)展道路。

  數(shù)學(xué),似乎是一個(gè)枯燥的學(xué)科,但是,卻是我們生活當(dāng)中,最為有用的工具之一,它是物理化學(xué)生物的搖籃,是政治經(jīng)濟(jì)學(xué)的基礎(chǔ),是市場(chǎng)里的公平秤,是我們量化自己的必要工具。數(shù)學(xué),就是這么的一個(gè)“工具箱”,前人用萬(wàn)分的.努力汗水,把這個(gè)工具弄得更為人性化,更能讓我們好好地使用!稊(shù)學(xué)史概論》這本書(shū),真的讓我對(duì)數(shù)學(xué)有了更深的認(rèn)識(shí)。

  下面,我說(shuō)說(shuō)從《數(shù)學(xué)史概論》這本書(shū),我又學(xué)到了什么。

  古希臘第一位偉大的數(shù)學(xué)家泰勒斯,曾利用太陽(yáng)影子成功地計(jì)算出了金字塔的高度,實(shí)際上利用的就是相似三角形的性質(zhì)。看吧,利用數(shù)學(xué)簡(jiǎn)單的思維,就能把本不可能完成的計(jì)算,就這樣輕松解決了。在泰勒斯之后,以畢達(dá)哥拉斯為首的一批學(xué)者,對(duì)數(shù)學(xué)做出了極為重要的貢獻(xiàn)。發(fā)現(xiàn)“勾股定理”,是他們最出色的成就之一,因此直到現(xiàn)在,西方人仍然把勾股定理稱為“畢達(dá)哥拉斯定理”。正是這個(gè)定理,導(dǎo)致了無(wú)理數(shù)的發(fā)現(xiàn)。勾股定理,我相信很多人都很熟悉,可是又有多少人知道其中的具體的得來(lái)過(guò)程呢,從這條定理的證明,到后來(lái)導(dǎo)致了無(wú)理數(shù)的發(fā)現(xiàn),我也相信未來(lái),也一定有不少的理論在這個(gè)基礎(chǔ)上,不斷地被發(fā)現(xiàn),被證明。在畢達(dá)哥拉斯之后,就是偉大的古希臘哲學(xué)家亞里士多德,他是人類(lèi)科學(xué)發(fā)展史上最博學(xué)的人物之一,正是他所創(chuàng)立的邏輯學(xué),對(duì)古希臘數(shù)學(xué)的發(fā)展產(chǎn)生了深遠(yuǎn)的影響。到了歐幾里德時(shí)代,幾何學(xué)已經(jīng)成為一門(mén)相當(dāng)完整的學(xué)科了。歐幾里德的名著《幾何原本》,是世界數(shù)學(xué)史上最偉大的著作之一。時(shí)至今日,我們?cè)诔踔须A段學(xué)習(xí)的平面幾何,大部分知識(shí)依然來(lái)源于古老的《幾何原本》。在此之前,我只知道,亞里士多德在哲學(xué)方面為世界做出了很大的貢獻(xiàn),可是也不可否認(rèn),在幾何方面他也對(duì)數(shù)學(xué)界做出的貢獻(xiàn)不可磨滅。

  研究數(shù)學(xué)發(fā)展歷史的學(xué)科,是數(shù)學(xué)的一個(gè)分支,也是自然科學(xué)史研究下屬的一個(gè)重要分支。數(shù)學(xué)史研究的任務(wù)在于,弄清數(shù)學(xué)發(fā)展過(guò)程中的基本史實(shí),再現(xiàn)其本來(lái)面貌,同時(shí)透過(guò)這些歷史現(xiàn)象對(duì)數(shù)學(xué)成就、理論體系與發(fā)展模式作出科學(xué)、合理的解釋、說(shuō)明與評(píng)價(jià),進(jìn)而探究數(shù)學(xué)科學(xué)發(fā)展的規(guī)律與文化本質(zhì)。作為數(shù)學(xué)史研究的基該方法與手段,常有歷史考證、數(shù)理分析、比較研究等方法?梢哉f(shuō),在數(shù)學(xué)的漫長(zhǎng)進(jìn)化過(guò)程中,幾乎沒(méi)有發(fā)生過(guò)徹底推翻前人建筑的情況。正是我們不斷地為數(shù)學(xué)這座高樓添磚加瓦,它才能越立越高,越來(lái)越扎實(shí),我也為可以這樣學(xué)習(xí)和認(rèn)識(shí)數(shù)學(xué)而感到滿足!

  《數(shù)學(xué)史》讀后感 18

  我閱讀《數(shù)學(xué)史通論》,完全在一種休閑的、輕松的,也是舒坦的、愉快的狀況之中。碰到繁復(fù)的數(shù)學(xué)公式、定理及其證明等,我一目十行、囫圇吞棗,一如我讀大部頭的小說(shuō),往往常規(guī)地跳過(guò)向來(lái)不太在意的大段心理描寫(xiě)一樣。讀《數(shù)學(xué)史通論》,我卻十分留意它行云流水的敘述、縝密思維的演繹、多姿多彩的話語(yǔ)、宏大緊密的結(jié)構(gòu)。有時(shí),我按圖索驥,對(duì)著目錄,找準(zhǔn)其中的某一篇章,仔細(xì)揣摩;有時(shí),我隨意打開(kāi)其中的某頁(yè),順勢(shì)而讀,總能做到樂(lè)在其中。我不求透徹的理解、不求系統(tǒng)的把握,《數(shù)學(xué)史通論》讓我與牛頓、高斯這些巨人親密接觸,也讓我循著代數(shù)、幾何、算術(shù)、三角學(xué)發(fā)展的脈絡(luò),靠近(還不能說(shuō)走進(jìn))數(shù)學(xué)。在我來(lái)說(shuō),只是追求閱讀視野的擴(kuò)大、知識(shí)背景的重構(gòu)。

  數(shù)學(xué)是人類(lèi)創(chuàng)造活動(dòng)的過(guò)程,而不單純是一種形式化的結(jié)果;運(yùn)用辨證唯物主義的觀點(diǎn)看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過(guò)程中,不但表現(xiàn)出矛盾運(yùn)動(dòng)的特點(diǎn),而且它們與社會(huì)、政治、經(jīng)濟(jì)以及一般人類(lèi)的文化有著密切的聯(lián)系。

  它的內(nèi)容涉及到從上古時(shí)代到19世紀(jì)初的這段時(shí)期。為了跟蹤過(guò)去2000年當(dāng)中主要數(shù)學(xué)概念的發(fā)展,作者非常重視第一手資料的搜集與運(yùn)用。在介紹重要數(shù)學(xué)家的工作時(shí),大量從他們的原著中引用材料。在不列顛博物館、英國(guó)皇家學(xué)會(huì)和劍橋三一學(xué)院的幫助下,引用了比較多的史料,使人們對(duì)原始的情況獲得了深刻的印象。同時(shí),作者還注意到數(shù)學(xué)知識(shí)的繼承性和積累性,并不把重大的發(fā)現(xiàn)和發(fā)明完全歸功于某一個(gè)人。例如對(duì)歐幾里得和牛頓這樣一些主要的`流派,作者到說(shuō)明他們的成就的淵源,從而勾畫(huà)出數(shù)學(xué)科學(xué)本身發(fā)展的規(guī)律。斯科特博士依靠他對(duì)數(shù)學(xué)史的駕馭自如的能力寫(xiě)出了這本富有激勵(lì)性的好書(shū)。

  數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類(lèi)社會(huì)中,是數(shù)學(xué)與語(yǔ)言、藝術(shù)以及宗教一并構(gòu)成了最早的人類(lèi)文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類(lèi)文明的絢爛的花朵。這使數(shù)學(xué)成為人類(lèi)文化中最基礎(chǔ)的學(xué)科。對(duì)此恩格斯指出:“數(shù)學(xué)在一門(mén)科學(xué)中

  《數(shù)學(xué)史》讀后感 19

  《數(shù)學(xué)史》一直是我最想讀的一本書(shū)教學(xué)中我越來(lái)越覺(jué)得作為一個(gè)數(shù)學(xué)教師,數(shù)學(xué)史對(duì)我們有多少重要!于是我拜讀了數(shù)學(xué)史。

  我知道了,數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類(lèi)社會(huì)中,是數(shù)學(xué)與語(yǔ)言、藝術(shù)以及宗教一并構(gòu)成了最早的人類(lèi)文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類(lèi)文明的絢爛的花朵。這便使數(shù)學(xué)成為人類(lèi)文化中最基礎(chǔ)的工具。而在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。

  我知道了,第一次數(shù)學(xué)危機(jī)——你知道根號(hào)2嗎?你知道平時(shí)的一塊錢(qián)兩塊糖之中是怎么迸濺出無(wú)理數(shù)的火花的嗎?正是他——希帕蘇斯,是他首先發(fā)現(xiàn)了無(wú)理數(shù),是他開(kāi)始質(zhì)疑藏在有理數(shù)的背后的神奇數(shù)字。從那時(shí)起無(wú)理數(shù)成為數(shù)字大家庭中的一員,推理和證明戰(zhàn)勝了直覺(jué)和經(jīng)驗(yàn),一片廣闊的天地出現(xiàn)在眼前。但是,希帕蘇斯卻被無(wú)情地拋進(jìn)了大海。不過(guò),歷史卻絕對(duì)不會(huì)忘記他,縱然海浪早已淹沒(méi)了他的身軀,我們今天還保留著他的名字——希帕蘇斯!

  第二次數(shù)學(xué)危機(jī)——知道嗎?站在巨人的肩膀上的牛頓,曾經(jīng)站在英國(guó)大主教貝克萊的前面,用顫抖的嗓音述說(shuō)者自己的觀點(diǎn),沒(méi)有人相信他,沒(méi)有人支持他,即便他的觀點(diǎn)著實(shí)是今天的正解!數(shù)學(xué)分析被建立在實(shí)數(shù)理論的嚴(yán)格基礎(chǔ)之上,數(shù)學(xué)分析才真正成為數(shù)學(xué)發(fā)展的主流。

  第三次數(shù)學(xué)危機(jī)——我們聽(tīng)過(guò)這個(gè)名字——羅素,但是緊跟在他的身后的兩個(gè)字卻是那么刺眼——“悖論”!傲_素悖論”的出現(xiàn)使數(shù)學(xué)的確定性第一次受到了挑戰(zhàn),徹底動(dòng)搖了整個(gè)數(shù)學(xué)的`基礎(chǔ)。與此同時(shí),歌德?tīng)柕牟煌耆远ɡ韰s使希爾伯特雄心建立完善數(shù)學(xué)形式化體系、解決數(shù)學(xué)基礎(chǔ)的工作完全破滅。數(shù)學(xué)似乎是再也站不起來(lái)了。是的,羅素的觀點(diǎn)似乎真的很有道理,危機(jī)產(chǎn)生后,數(shù)學(xué)家紛紛提出自己的解決方案,比如ZF公理系統(tǒng)。這一問(wèn)題的解決到現(xiàn)在還在進(jìn)行中。羅素悖論的根源在于集合論里沒(méi)有對(duì)集合的限制,以至于讓羅素能構(gòu)造一切集合的集合這樣“過(guò)大”的集合,對(duì)集合的構(gòu)造的限制至今仍然是數(shù)學(xué)界里一個(gè)巨大的難題!不過(guò),我們不能蔑視“羅素悖論”,換種說(shuō)法,不正是這個(gè)“悖論”引起了我們的思考嗎?不正是這個(gè)“悖論”使我們更有創(chuàng)造精神嗎?

  我知道了,我們中國(guó)在數(shù)學(xué)上的成就也絕對(duì)不能忽視,從《九章算術(shù)》到《周髀算經(jīng)》,中國(guó)傳統(tǒng)數(shù)學(xué)源遠(yuǎn)流長(zhǎng),有其自身特有的思想體系與發(fā)展途徑。它持續(xù)不斷,長(zhǎng)期發(fā)達(dá),成就輝煌,呈現(xiàn)出鮮明的“東方數(shù)學(xué)”色彩,對(duì)于世界數(shù)學(xué)發(fā)展的歷史進(jìn)程有著深遠(yuǎn)的影響。

  《數(shù)學(xué)史》讀后感 20

  首先,看到這本書(shū)后,第一個(gè)感覺(jué)是這本書(shū)太厚了,肯定無(wú)聊。而第二個(gè)印象是在每一個(gè)概念后的“見(jiàn)數(shù)學(xué)概念小史某某頁(yè)”,然后這最重要的事是這書(shū)講了這我不曾了解的事。

  從過(guò)去到現(xiàn)在,先是古埃及人,他們的方法對(duì)于現(xiàn)代太不實(shí)用了,但是他們還是聰明,知道用符號(hào),用兩個(gè)符號(hào)來(lái)表示1()和10(),這東西就是冪,在生活中肯定很少用,而且我還發(fā)現(xiàn)這數(shù)學(xué)呢我一直認(rèn)為是想從簡(jiǎn)單到復(fù)雜,但是并不是如此,可以說(shuō)是相反的。

  比巴倫的數(shù)學(xué)家們特別有趣,造的題目也有趣,不實(shí)用,但是很好玩,在本書(shū)的15頁(yè),有這原題,這大概就是用一根蘆葦去測(cè)量田有多大,其實(shí)就是二元一次方程,但是看完頭都大了,不知到底在講什么。

  繼續(xù)讀著,誒!看見(jiàn)了老熟人——?dú)W幾里得,從小學(xué)周?chē)娜硕荚谡務(wù)撝o我講他的曠世巨作《幾何原本》,過(guò)去經(jīng)常說(shuō)“好,好,好,《幾何原本》好!钡俏也⒉恢肋@書(shū)居然是公元前三千多年左右寫(xiě)的,我一直認(rèn)為他是希臘人,但是他居然是埃及人,這好奇怪,據(jù)書(shū)中說(shuō)有很多的希臘數(shù)學(xué)家都不是希臘人。

  繼續(xù)讀,數(shù)學(xué)也和天文學(xué)有關(guān),從天文學(xué)中又出現(xiàn)了三角學(xué),原來(lái)三角學(xué)是從天文學(xué)出來(lái)的,在讀阿拉伯?dāng)?shù)學(xué)時(shí),看見(jiàn)了“楊輝”三角形,但是這書(shū)中的是“帕斯卡三角形”,其實(shí)也是“楊輝”三角形,所以后者好記些。

  微積分里面看見(jiàn)了伽利略,但是似乎不是他的主場(chǎng),所以不管他,微積分這里知道了流數(shù)和微分基本上都是我們現(xiàn)在所稱的導(dǎo)數(shù)。他們的發(fā)明者分別是牛頓和萊布尼茨。牛頓這特別熟悉了,這萊布尼茨是個(gè)律師和數(shù)學(xué)家,他最可以的是他的公式幾乎都是在顛簸的馬車(chē)上寫(xiě)下。在各個(gè)學(xué)科每每留下了著作。

  還有一個(gè)人讓我記住了,叫做歐拉,不光名字好記,他自己也是一個(gè)喜歡記的'人,據(jù)書(shū)上所說(shuō),他可以說(shuō)是一個(gè)論文天才也是數(shù)學(xué)天才,因?yàn)橹灰幸粋(gè)好的方法,自己馬上就寫(xiě)一篇論文,來(lái)記下自己的觀念。

  這便是這《這才是好讀的數(shù)學(xué)史》上篇的讀后感,不是特別無(wú)聊,反而還有一些有趣,整體的布局也不錯(cuò),讓讀者一步步深入,有特別強(qiáng)的吸引力,可能因人而異吧,下篇就是純數(shù)學(xué)了,所以這便是我的讀后感了。

  《數(shù)學(xué)史》讀后感 21

  在我閱讀數(shù)學(xué)史之前,數(shù)學(xué)在我的腦子里,就是一個(gè)很難很難的學(xué)科。數(shù)學(xué)漂浮在我的腦海里,像一只枯萎的蝴蝶,死板而又無(wú)味。

  但是在閱讀數(shù)學(xué)史之后我知道了,數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng)。我了解到,在早期的人類(lèi)社會(huì)中,是數(shù)學(xué)與語(yǔ)言、藝術(shù)以及宗教一并構(gòu)成了最早的人類(lèi)文明。數(shù)學(xué)是最抽象的科學(xué),而最抽象的數(shù)學(xué)卻能催生出人類(lèi)文明的絢爛的花朵。這便使數(shù)學(xué)成為人類(lèi)文化中最基礎(chǔ)的`工具。而在現(xiàn)代社會(huì)中,數(shù)學(xué)正在對(duì)科學(xué)和社會(huì)的發(fā)展提供著不可或缺的理論和技術(shù)支持。

  就像書(shū)中所寫(xiě)的一樣,或許在數(shù)學(xué)課上講一些有趣的小故事,可以提高學(xué)生的專(zhuān)注力和興趣,然后引入課堂。

  可能是由于我見(jiàn)識(shí)短淺(?)我一直認(rèn)為中國(guó)數(shù)學(xué)是非常高深,深不可測(cè)的那種,認(rèn)為中國(guó)數(shù)學(xué)在世界有最高的影響力和地位。但其實(shí)中數(shù)是非常具有影響力(九九乘法表,11的兩邊一拉中間相加)但希臘數(shù)學(xué)是獨(dú)一無(wú)二的,盡管在現(xiàn)在的數(shù)學(xué)之中,希臘數(shù)學(xué)家的邏輯推理和證明都是擺在數(shù)學(xué)中心的。數(shù)學(xué)家或許有許多不同,但他們絕對(duì)擁有財(cái)力·時(shí)間和數(shù)學(xué)天賦。他們的嚴(yán)謹(jǐn)性和專(zhuān)業(yè)精神恐怕是我畢生難以追求的吧。

  總的來(lái)說(shuō),數(shù)學(xué)是人類(lèi)創(chuàng)造活動(dòng)的過(guò)程,而不單純是一種形式化的結(jié)果;運(yùn)用辨證唯物主義的觀點(diǎn)看待數(shù)學(xué)科學(xué)及數(shù)學(xué)教育,在他們的形成和發(fā)展過(guò)程中,不但表現(xiàn)出矛盾運(yùn)動(dòng)的特點(diǎn),而且它們與社會(huì)、政治、經(jīng)濟(jì)以及一般人類(lèi)的文化有著密切的聯(lián)系,而這些聯(lián)系就像龍須酥一樣香濃醇厚,萬(wàn)般絲滑,密不可分,是不能夠輕易斬?cái)嗟年P(guān)系!

  數(shù)學(xué)史不僅僅是單純的數(shù)學(xué)成就的編年記錄。數(shù)學(xué)的發(fā)展決不是一帆風(fēng)順的,在跟讀的情況下是充滿猶豫、徘徊,要經(jīng)歷艱難曲折,甚至?xí)媾R困難和戰(zhàn)盛危機(jī)的斗爭(zhēng)記錄。無(wú)理量的發(fā)現(xiàn)、微積分和非歐幾何的創(chuàng)立…這些例子可以幫助人們了解數(shù)學(xué)創(chuàng)造的真實(shí)過(guò)程,而這種真實(shí)的過(guò)程是在教科書(shū)里以定理到定理的形式被包裝起來(lái)的。對(duì)這種創(chuàng)造過(guò)程的了解則可以使人們探索與奮斗中汲取教益,獲得鼓舞和增強(qiáng)信心。

  我相信在未來(lái),數(shù)學(xué)史帶給我的影響,會(huì)影響到我的一生,我也希望中國(guó)數(shù)學(xué)能夠源遠(yuǎn)流長(zhǎng),從《九章算術(shù)》到《周髀算經(jīng)》呈現(xiàn)出更多的”東方數(shù)學(xué)“的色彩!

  《數(shù)學(xué)史》讀后感 22

  數(shù)學(xué)的歷史源遠(yuǎn)流長(zhǎng),而通過(guò)這本書(shū)我對(duì)數(shù)學(xué)的歷史有了基礎(chǔ)的了解。讓我初步了解了數(shù)學(xué)這門(mén)科學(xué)產(chǎn)生與發(fā)展的歷史過(guò)程,同時(shí)也感受到了數(shù)學(xué)家們的嚴(yán)謹(jǐn)?shù)?治學(xué)態(tài)度以及鍥而不舍的探索精神。

  總而言之《這才是好讀的數(shù)學(xué)史》從數(shù)學(xué)的源頭寫(xiě)起,分別介紹了古希臘,古印度,古巴比倫,古代中國(guó),以及中世紀(jì)歐洲,這本書(shū)詳細(xì)的介紹了每個(gè)國(guó)家的數(shù)學(xué)發(fā)展,同時(shí)聯(lián)系了地理,將數(shù)學(xué)在世界版圖上鏈接起來(lái)。

  其中在阿拉伯?dāng)?shù)學(xué)中,提到了帕斯卡三角形,也就是我們非常熟悉的楊輝三角,讓我更加了解了楊輝三角,以及阿拉伯人在幾何學(xué)和三角學(xué)方面做出的重要貢獻(xiàn)。

  一說(shuō)起π,就想到了3.1415926……這一個(gè)無(wú)限不循環(huán)的數(shù)?搔凶畛醪⒉皇潜硎疽粋(gè)數(shù),而是希臘字母對(duì)應(yīng)英文字母的P?梢(jiàn)π的歷史悠久。書(shū)中也舉例了從約公元前1650年到2002年,人們從只能計(jì)算圓的周長(zhǎng)的近似值到可以用現(xiàn)代計(jì)算器計(jì)算沒(méi)有誤差?梢(jiàn)數(shù)學(xué)家們對(duì)數(shù)學(xué)的執(zhí)著。

  這本書(shū)結(jié)合歷史地理為我們講述了與眾不同且吸引人的數(shù)學(xué)史,同時(shí)也讓我感受到了數(shù)學(xué)獨(dú)一無(wú)二的魅力。

  《數(shù)學(xué)史》讀后感 23

  本書(shū)上篇 數(shù)學(xué)簡(jiǎn)史共12章節(jié),以時(shí)間順序講述。從3.7萬(wàn)年到如今,人類(lèi)在不斷進(jìn)步,而數(shù)學(xué)也隨著人類(lèi)的進(jìn)步而進(jìn)步。在這本書(shū)中,強(qiáng)調(diào)了數(shù)學(xué)的抽象性與神秘性。

  我們現(xiàn)在學(xué)習(xí)的知識(shí)都是先輩們經(jīng)過(guò)漫長(zhǎng)探索、研究、討論總結(jié)出的。書(shū)中出現(xiàn)的故事和公式使人眼前一新。比如古埃及人求圓的面積時(shí),實(shí)際上是求圓的近似值。如今大家都知道π·r,古埃及人卻是用(8/9·d)求S圓的近似值。可以發(fā)現(xiàn)古埃及人在這個(gè)公式里并沒(méi)有使用到“π”,這樣反而要方便些。

  我注意到的一個(gè)故事是:21世紀(jì)開(kāi)始,克萊學(xué)院決定在克萊的領(lǐng)導(dǎo)下,選擇7個(gè)數(shù)學(xué)課題,并予每個(gè)課題100萬(wàn)美金的獎(jiǎng)金,而那7個(gè)數(shù)學(xué)課題是關(guān)于“千禧年問(wèn)題”書(shū)中并沒(méi)有提到7個(gè)問(wèn)題分別是什么,于是便上網(wǎng)查了查。分別是:戴雅猜想、霍奇猜想、納維爾-斯托克斯方程、P與NP問(wèn)題、龐家萊猜想、黎曼假設(shè)、楊-米爾斯理論。這7個(gè)問(wèn)題是真的難,連題目都看不懂的那種難.

  有一個(gè)問(wèn)題與開(kāi)普勒猜想有關(guān):如何將最大數(shù)量的球體放置在最小的'空間中,我認(rèn)為這和奇點(diǎn)有些相似,但看起來(lái)不成立的樣子。但在那些數(shù)學(xué)家的眼里,這仿佛是一個(gè)十分有趣,又值得思考的問(wèn)題。托馬斯·黑爾斯最終證明了它。

  數(shù)學(xué)是抽象的,也是無(wú)限的,他們的出現(xiàn)大概是我們的祖先為了方便生活而發(fā)明出來(lái)的。到如今,數(shù)學(xué)在不斷的進(jìn)步,但還是有許多十分困難的問(wèn)題在等著我們?nèi)ソ獯稹?shù)學(xué)不僅在生活中扮演著重要的角色,還是世界通用的語(yǔ)言。

  《數(shù)學(xué)史》讀后感 24

  什么是數(shù)學(xué)?在我的印象中數(shù)學(xué)無(wú)非就是符號(hào)數(shù)字不停的計(jì)算與難記的公式,但這本《這才是好讀的數(shù)學(xué)史》讓我有了一次全新的體驗(yàn)。

  從小就聽(tīng)大人們講數(shù)學(xué)源于生活在生活中無(wú)處不在,例如本子的形狀為長(zhǎng)方形,這就是生活中的數(shù)學(xué)。這看似非 常簡(jiǎn)單,可他為什么會(huì)被設(shè)計(jì)為長(zhǎng)方形?平常裝東西使用的籃子也是包含了數(shù)學(xué)元素,最早新人們?yōu)樯畹?需求, 數(shù)學(xué)便誕生了。沒(méi)有人知道數(shù)學(xué)究竟是多久開(kāi)始的?在蒙昧的時(shí)代,人們便有了數(shù)覺(jué),然后慢慢形成了數(shù)的概念。

  早在早期人們便研究圓周率,但無(wú)法研究出圓周率真正準(zhǔn)確的數(shù)字,從約公元前1650年至今,人們研究圓周率經(jīng) 歷了一個(gè)漫長(zhǎng)的過(guò)程?蔀槭裁慈祟(lèi)會(huì)花這么多經(jīng)歷去研究圓周率,圓周率為無(wú)理數(shù),數(shù)字也是隨機(jī)性的,如同一個(gè) 蟲(chóng)洞,十分令人著迷。而圓在我們生活中也很重要,如同望遠(yuǎn)鏡,碗,車(chē)輪,碗為圓形吃飯用時(shí)更加方便,并且不像 方形碗那樣處理四角,圓形清理也更加方便。輪胎為圓形,因?yàn)闈L動(dòng)摩擦力比滑動(dòng)摩擦力阻力更小。圓為我們生活提 供了許多方便。

  數(shù)字計(jì)算機(jī)也是人類(lèi)一大發(fā)明。第二次世界大戰(zhàn)時(shí),艾倫圖靈設(shè)設(shè)計(jì)了幾臺(tái)電子機(jī)器來(lái)幫助進(jìn)行密碼分析,他帶 領(lǐng)英國(guó)成功破解德國(guó)潛艇司令部的所謂謎碼,數(shù)字也可為戰(zhàn)爭(zhēng)的一部分(密碼戰(zhàn))。數(shù)字計(jì)算機(jī)可以很快讀取數(shù)字與 形成數(shù)字,2002年金田康正教授的團(tuán)隊(duì)也是通過(guò)使用數(shù)字計(jì)算機(jī)算出圓周率小數(shù)點(diǎn)后12位,比原始探究方法不知快 了多少倍,這不禁令人驚嘆。

  數(shù)學(xué)說(shuō)如同一個(gè)工具箱,前人們不斷把這個(gè)工具箱變得更人性化,好讓我們使用。數(shù)學(xué)如同一個(gè)高塔,古往今來(lái) 人們一直在建造它,正是人們不斷為這座高樓添磚加瓦,它才能越建越高,越來(lái)越扎實(shí)。

  數(shù)學(xué)并非是僵硬的,而是生動(dòng)形象的,只有了解好數(shù)學(xué)史,才能更好的學(xué)習(xí)數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 25

  數(shù)學(xué)是神秘的,古老而明亮,在人類(lèi)歷史長(zhǎng)河中,閃閃發(fā)光,我讀了數(shù)學(xué)史后,知道了數(shù)學(xué)的起源,發(fā)展與未來(lái)的走向,其中,《微積分與應(yīng)用數(shù)學(xué)》給我留下深刻印象

  16世紀(jì)到17世紀(jì),可以說(shuō)是一個(gè)數(shù)學(xué)史路上一個(gè)里程碑,在16世紀(jì)早期,學(xué)者們創(chuàng)造了代數(shù),他們被稱為“未知數(shù)計(jì)算家”,在那個(gè)時(shí)期,代數(shù)占據(jù)了數(shù)學(xué)史的中心位置,而到了16世紀(jì)末17世紀(jì)初,人類(lèi)開(kāi)始了新的探索,代數(shù)與幾何共存,以此來(lái)研究天文,工程,航海,甚至是政治上的一些問(wèn)題:開(kāi)勒普用希臘圓錐描述太陽(yáng)系,托馬斯·哈里奧特則發(fā)展代數(shù),笛卡爾把代數(shù)和幾何結(jié)合,從而開(kāi)始理解彗星,光等現(xiàn)象,這一時(shí)期,可以說(shuō)是各種數(shù)學(xué)成就在此出生,但最出名的,還是微積分,當(dāng)時(shí)人們無(wú)法用數(shù)字表現(xiàn)出天體的運(yùn)動(dòng),無(wú)法表現(xiàn)一些抽象的物體,于是牛頓與萊布尼茨發(fā)明了微積分,但微積分始終還是較為抽象,不就后,當(dāng)時(shí)最著名的數(shù)學(xué)家——?dú)W拉也做出了一系列成就:三角形中的幾何學(xué),多面體的.基本定理,有趣的是,歐拉甚至將數(shù)應(yīng)用于船舶,中彩票或是過(guò)橋,歐拉將自己生活的方方面面都往數(shù)學(xué)上想,在他的世界中,數(shù)學(xué)無(wú)處不在。

  我們不難看出這些數(shù)學(xué)家的發(fā)明的確大大改變了人們的生活,他們掌握了探索世界的鑰匙——數(shù)學(xué),將數(shù)學(xué)應(yīng)用到方方面面,我們現(xiàn)代生活不也是如此,處處是數(shù)學(xué),但最重要的是,我們熱愛(ài)數(shù)學(xué)。

  《數(shù)學(xué)史》讀后感 26

  著名數(shù)學(xué)家陳省身曾說(shuō)過(guò):“了解歷史的變化是了解這門(mén)科學(xué)的一個(gè)步驟。”李文林先生的《數(shù)學(xué)史概論》即為我們了解數(shù)學(xué)提供了重要途徑,本書(shū)系統(tǒng)全面,且一反尋常論述類(lèi)著作的晦澀,理性與趣味并舉,嚴(yán)謹(jǐn)與生動(dòng)兼?zhèn)洌M顯數(shù)學(xué)的神圣與魅力。成書(shū)的初衷是為一些高等院校的數(shù)學(xué)史課程提供一個(gè)參考范本,但事實(shí)上,本書(shū)除了為數(shù)學(xué)專(zhuān)業(yè)師生提供參考外,也在不同程度上滿足了對(duì)數(shù)學(xué)史感興趣的各類(lèi)讀者的需求,自2000年8月出版第1版以來(lái),深受廣大讀者的推崇。

  初讀此書(shū)時(shí),我還是一名大三的學(xué)生,一次偶然的翻閱,為我打開(kāi)了新世界的大門(mén),那些陌生的、新奇的領(lǐng)域逐漸豁然開(kāi)朗。原來(lái)數(shù)學(xué)的演化經(jīng)歷了一個(gè)漫長(zhǎng)而又曲折的過(guò)程,從遠(yuǎn)古到現(xiàn)代,它不斷發(fā)展完善著;原來(lái)每一個(gè)看似簡(jiǎn)單的定理都承載著一個(gè)不為人知的故事,它簡(jiǎn)單卻厚重;原來(lái)數(shù)學(xué)是一門(mén)理性卻并不冰冷的學(xué)科,它來(lái)源于生活而又高于生活,鮮活且生動(dòng)。正如李文林先生在書(shū)中所言“數(shù)學(xué)的發(fā)展與人類(lèi)的生產(chǎn)實(shí)踐和社會(huì)需求密切相關(guān)。對(duì)自然的探索是數(shù)學(xué)研究最豐富的源泉。但是數(shù)學(xué)的發(fā)展對(duì)于現(xiàn)實(shí)世界又表現(xiàn)出相對(duì)的獨(dú)立性。一門(mén)數(shù)學(xué)分支或一種數(shù)學(xué)理論已經(jīng)建立。人們便可在不受外部影響的情況下,僅靠邏輯思維而將它向前推進(jìn)。并由此導(dǎo)致新理論與新思想的產(chǎn)生!彼且婚T(mén)科學(xué),也是一種語(yǔ)言,有自己的文字符號(hào),有自己的內(nèi)在邏輯體系。它從無(wú)到有,從零散到系統(tǒng),從微小到龐大,它所經(jīng)歷的每一次危機(jī),又由此所取得的每一個(gè)重大突破,讓我為之震撼與景仰。

  如今我已是一名入職兩年的數(shù)學(xué)教師,再看《數(shù)學(xué)史概論》,又能從中汲取許多教學(xué)靈感。學(xué)生對(duì)數(shù)學(xué)沒(méi)興趣,認(rèn)為數(shù)學(xué)枯燥,學(xué)無(wú)所用,一方面是因?yàn)槎嗄瓯粩?shù)學(xué)作業(yè)支配的恐懼,另一方面也來(lái)自于他們對(duì)數(shù)學(xué)的不了解。倘若在一個(gè)孩子還小的時(shí)候,就依據(jù)他的認(rèn)知水平,給他講一些數(shù)學(xué)家的和數(shù)學(xué)發(fā)展中的逸聞趣事,例如,泰勒斯測(cè)量金字塔、阿基米德給國(guó)王測(cè)量王冠體積、祖沖之父子與圓周率、數(shù)學(xué)王子高斯與其卓越的數(shù)學(xué)天賦、費(fèi)馬與費(fèi)馬大定理、理發(fā)師悖論與芝諾悖論等等,那么,在日后的數(shù)學(xué)學(xué)習(xí)中,他也許不會(huì)對(duì)數(shù)學(xué)產(chǎn)生抵觸情緒。在學(xué)習(xí)到相關(guān)內(nèi)容時(shí),看到一個(gè)個(gè)熟悉的人名,便會(huì)自然而然地產(chǎn)生親切感和興趣,學(xué)習(xí)起來(lái)事半功倍。

  而作為高中數(shù)學(xué)教師,我們也可以將數(shù)學(xué)史融入平時(shí)的數(shù)學(xué)教學(xué)中,讓學(xué)生在數(shù)學(xué)學(xué)習(xí)過(guò)程中,不僅接觸到冷冰冰的知識(shí),還接觸到知識(shí)背后所蘊(yùn)藏的數(shù)學(xué)家的情感和意志,體味其中的數(shù)學(xué)思想,感受到數(shù)學(xué)的文化魅力。比如在必修一“函數(shù)與方程”的教學(xué)中,可以給學(xué)生講,從塔塔利亞到阿貝爾和伽羅瓦的`方程發(fā)展史,讓學(xué)生明白利用“函數(shù)與方程的關(guān)系”求解方程近似解的意義。在必修二解析幾何的教學(xué)中,可以根據(jù)笛卡爾的“通用數(shù)學(xué)”思路,引導(dǎo)學(xué)生發(fā)現(xiàn):解決幾何問(wèn)題的一大途徑,是將它轉(zhuǎn)化為代數(shù)問(wèn)題。

  數(shù)學(xué)是一門(mén)歷史性或者說(shuō)是累積性很強(qiáng)的學(xué)科,我們學(xué)習(xí)數(shù)學(xué)的過(guò)程應(yīng)與人類(lèi)認(rèn)識(shí)數(shù)學(xué)的順序一致,這樣更符合我們的數(shù)學(xué)認(rèn)知規(guī)律。學(xué)習(xí)數(shù)學(xué)的道路上遇到的每一個(gè)問(wèn)題,或許都有數(shù)學(xué)家為它絞盡腦汁過(guò)。讀數(shù)學(xué)史,可以幫助我們了解數(shù)學(xué)演化的真實(shí)過(guò)程,體味數(shù)學(xué)思想的誕生與發(fā)展,可以使我們從前人的探索和奮斗中汲取教訓(xùn)和經(jīng)驗(yàn),獲得鼓舞和增強(qiáng)信心。那些悠悠長(zhǎng)河中的數(shù)學(xué)人所做的每一份努力,都是為了讓我們可以站在他們的肩膀上,更清楚地認(rèn)識(shí)這個(gè)世界。

  數(shù)學(xué)是各個(gè)時(shí)代人類(lèi)文明的標(biāo)志之一,是推進(jìn)人類(lèi)文明的重要力量,數(shù)學(xué)史不僅是我們這些數(shù)學(xué)相關(guān)人士需要了解的,任何一個(gè)關(guān)心人類(lèi)文明發(fā)展的人都值得了解。

【《數(shù)學(xué)史》讀后感】相關(guān)文章:

論數(shù)學(xué)史的教育價(jià)值04-28

對(duì)數(shù)學(xué)史與數(shù)學(xué)教育的思考05-02

中國(guó)數(shù)學(xué)史研究范式的轉(zhuǎn)換04-30

《數(shù)學(xué)史》讀后感05-01

《數(shù)學(xué)史》讀后感05-27

數(shù)學(xué)史與初中數(shù)學(xué)教學(xué)的整合論文05-01

《數(shù)學(xué)史選講》讀后感02-20

從數(shù)學(xué)史看數(shù)學(xué)符號(hào)的重要性04-29

從數(shù)學(xué)史角度研究數(shù)學(xué)學(xué)習(xí)動(dòng)機(jī)05-04